| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||
| 4 | (a) | \(\cos \theta = \frac { 1 } { 2 }\) or \(\sin \theta = \frac { \sqrt { 3 } } { 2 }\) | M1 | 3.1b | Must be clear where it comes from ie. Shown in diagram or clear use of distances. May be other way round | \(\theta\) is the angle between the string and the direction of \(A B\) when the string initially becomes taut | ||
| A1 | 3.1b | Working must be seen | ||||||
| \(\begin{aligned} | v \sin \theta = ( 1 + m ) V | |||||||
| V = \frac { \sqrt { 3 } v } { 2 ( 1 + m ) } | ||||||||
| I = m V \text { or } I = \pm ( V - v \sin \theta ) | ||||||||
| V = \frac { v \times \frac { 1 } { 2 } \sqrt { 3 } } { 1 + m } \Rightarrow I = \frac { \sqrt { 3 } m v } { 2 ( 1 + m ) } \end{aligned}\) | A1 | 2.2a | AG Justification of using Impulse = change in momentum | |||||
| [4] | ||||||||
| 4 | (b) | \(\begin{aligned} | \mathrm { KE } = \frac { 1 } { 2 } \left( V ^ { 2 } + ( v \cos \theta ) ^ { 2 } \right) \text { soi } | |||||
| \mathrm { KE } = \frac { 1 } { 2 } \left( \left( \frac { \sqrt { 3 } v } { 2 ( 1 + m ) } \right) ^ { 2 } + \left( v \times \frac { 1 } { 2 } \right) ^ { 2 } \right) | ||||||||
| \mathrm { KE } = \frac { v ^ { 2 } \left( 4 + 2 m + m ^ { 2 } \right) } { 8 ( 1 + m ) ^ { 2 } } \end{aligned}\) | M1 | 3.1b | Transverse component unchanged and using their longitudinal component | Condone consideration of speed squared or inclusion of m in KE | ||||
| М1 | 1.1 | Substituting in for \(V\) and \(\cos \theta\) (could just be in speed equation) | ||||||
| A1 | 1.1 | Or any equivalent single algebraic fraction | ||||||
| [3] | ||||||||
| 4 | (c) |
| B1 | 3.2a | If m is very large then \(A\) is approximately stationary or \(B\) has only its transverse velocity of \(\frac { 1 } { 2 } v\) after the string becomes taut | |||
| B1 | 2.2b | |||||||
| [2] | ||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||
| 2 | (b) | (ii) |
| B1 | 3.4 | Allow the idea that \(v = 2.5 f\) for large \(t\), and allow technically inaccurate statements (eg "v speeds up") provided that intent is clear | SC: If B0B1B0 or B0B0B0 awarded. If mentions \(v\) approaches \(2.5 f\) for cases 1 and 3 award B1 or if mentions \(v\) increases in case 1 and \(v\) decreases in case 3 award B1 | |||||
| B1 | 3.4 | |||||||||||
| B1 | 3.4 | See above | ||||||||||
| [3] | ||||||||||||
| 2 | (c) | \multirow[b]{5}{*}{
| 1.1 | |||||||||
| 3.4 | Could be in a definite integral | |||||||||||
| \(\begin{aligned} | \frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 1 } { 2 } \left( 5 - \mathrm { e } ^ { - \frac { 4 } { 45 } t } \right) f \text { oe } | |||||||||||
| x = 2.5 f t + \frac { 45 } { 8 } f \mathrm { e } ^ { - \frac { 4 } { 45 } t } + c ^ { \prime } | ||||||||||||
| \Rightarrow c ^ { \prime } = - \frac { 45 } { 8 } f \text { and use of } t = 9 \text { to find } x | ||||||||||||
| x = \frac { 45 } { 8 } \left( 3 + \mathrm { e } ^ { - 0.8 } \right) f \end{aligned}\) | \includegraphics[max width=\textwidth, alt={}]{439ec1f0-60b8-4272-98cc-0c30d116c4cf-11_491_63_799_1606} | , or \(x = \left[ 2.5 f t + \frac { 45 } { 8 } f \mathrm { e } ^ { - \frac { 4 } { 45 } t } \right] _ { 0 } ^ { 9 }\) with | ||||||||||
| 1.1 | ||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||
| \multirow{10}{*}{3} | \multirow{10}{*}{(a)} | M1 A1 | 3.3 1.1 | Conservation of energy | \(\theta\) is the angle between \(O P\) and the upward vertical | |
| B1 | 1.1 | NII for \(P\) at point where it is about to lose contact with surface. | Could see contact force, \(C\), later set to 0 | |||
| \(\frac { 1 } { 2 } m v ^ { 2 } + m \gamma r \cos \theta = m \gamma r \cos \alpha\) oe \(v ^ { 2 } + 2 \gamma r \cos \theta = \frac { 3 } { 2 } \gamma r\) \(m \gamma \cos \theta \quad ( - C ) = m a\) \(a = \frac { v ^ { 2 } } { r }\) \(\cos \theta = \frac { a } { \gamma } = \frac { v ^ { 2 } } { \gamma r }\) | М1 | 2.2a | Use previous two results to relate \(v\) and \(\cos \theta\) | |||
| \(\nu ^ { 2 } = \frac { 1 } { 2 } \gamma r\) | A1 | 2.2a | for \(v\) or \(v ^ { 2 }\) or \(\cos \theta = \frac { 1 } { 2 }\) | |||
| \(r \cos \theta = \left( \sqrt { \frac { 1 } { 2 } \gamma r } \sin \theta \right) t + \frac { 1 } { 2 } \gamma t ^ { 2 }\) | M1 | 3.4 | Use of \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\) using their vertical component of v as u where v has come from consideration of theta | Or use of trajectory eqn: \(y = x \tan \theta + \frac { \gamma x ^ { 2 } } { 2 v ^ { 2 } \cos ^ { 2 } \theta } \text { with }\) | ||
| \(t ^ { 2 } + \sqrt { \frac { 3 r } { 2 \gamma } } t - \frac { r } { \gamma } = 0\) \(t = \frac { 1 } { 4 } \sqrt { \frac { r } { \gamma } } ( \sqrt { 22 } - \sqrt { 6 } )\) | *M1 | 1.1 | Reduction to 3 term quadratic with numerical values for trig ratios | \(8 x ^ { 2 } + 2 \sqrt { 3 } r x - r ^ { 2 } = 0\) | ||
| Dep* M1 | 1.1 | |||||
| \(O F = r \sin \theta + \sqrt { \frac { 1 } { 2 } \gamma r } \cos \theta \times \frac { 1 } { 4 } \sqrt { \frac { r } { \gamma } } ( \sqrt { 22 } - \sqrt { 6 } )\) | Dep* M1 | 3.4 | Find \(O F\) | \(x = \frac { \sqrt { 11 } - \sqrt { 3 } } { 8 } r\) | ||
| \(O F = \frac { r } { 8 } ( \sqrt { 11 } + 3 \sqrt { 3 } ) \quad\) oe | A1 | 1.1 | ||||
| [11] | ||||||
| Question | Answer | Marks | AOs | Guidance | |||
| 3 | (b) | Unchanged since \(O F\) does not depend on \(\gamma\) |
| 3.5a | |||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||
| \multirow[t]{3}{*}{3} | \multirow[t]{3}{*}{(e)} | \(\mathrm { e } ^ { - k t } = \frac { g - k v } { g } \quad\) so \(t \rightarrow \infty , \Rightarrow v _ { T } = \frac { g } { k }\) | B1 | 3.4 | ||||||||
| Alternative method \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 0 \Rightarrow m g - 6 \pi \eta r v _ { T } = 0 \Rightarrow v _ { T } = \frac { m g } { 6 \pi \eta r } = \frac { g } { k }\) | B1 | |||||||||||
| [1] | ||||||||||||
| 3 | (f) |
|
|
| ||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||||||||
| 4 | (a) | The central radius is a line of symmetry of the shape. | B1 [1] | 2.4 | Allow equal area each side | ||||||||||||||||||||||||
| 4 | (b) |
|
|
|
| Must see change from double angle | |||||||||||||||||||||||
| 4 | (c) |
|
|
|
|
| |||||||||||||||||||||||
| 4 | (d) |
|
|
| May see \(M g\) and \(m g\) | ||||||||||||||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||||
| 1 | (a) |
|
|
| Using WD = F.x | |||||||||
| 1 | (b) | \(1500 / 5 = 300 \mathrm {~W}\) |
| 1.1a | Their 1500 | Must be a scalar value | ||||||||
| \multirow[t]{3}{*}{1} | \multirow[t]{3}{*}{(c)} |
|
|
|
| Can use their WD for M mark | ||||||||
|
| complete method involving constant acceleration formula(e) | ||||||||||||
| [2] | ||||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||
| 2 | (a) | \(\begin{aligned} | \bar { x } = \frac { \int _ { 0 } ^ { 5 } x ( 6 + \sin x ) \mathrm { d } x } { \int _ { 0 } ^ { 5 } ( 6 + \sin x ) \mathrm { d } x } = \frac { 72.622 \ldots } { 30.716 \ldots } | |||||||||||||||
| = \frac { 72.622 \ldots } { 30.716 \ldots } = 2.36 ( 3 \mathrm { sf } ) \end{aligned}\) |
|
|
| |||||||||||||||
| 2 | (b) | \(\bar { y } = \frac { \int _ { 0 } ^ { 5 } \frac { 1 } { 2 } ( 6 + \sin x ) ^ { 2 } \mathrm {~d} x } { \int _ { 0 } ^ { 5 } ( 6 + \sin x ) \mathrm { d } x } = \frac { 95.616 \ldots } { 30.716 \ldots }\) |
|
| BC Attempt to use formula and either top or bottom correct soi | |||||||||||||
| 2 | (c) |
|
|
| eg The binding has no mass or the binding is very small so that the mass is concentrated at the hinge or the binding is smooth eg The badge is modelled as a particle or the badge is uniform | |||||||||||||
| 2 | (d) |
|
|
| Total 'clockwise' moment about binding axis (allow inclusion of \(g\) if consistent)... ...equals 'anticlockwise' moment |
| ||||||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||||||||
| \multirow[t]{3}{*}{3} | \multirow[t]{3}{*}{(a)} | \(\begin{aligned} | u _ { A y } = \sqrt { 3 } \text { or awrt } 1.73 | ||||||||||||||||||||||||||
| v _ { A y } = u _ { A y } ( = \sqrt { 3 } ) | |||||||||||||||||||||||||||||
| \binom { 1 } { \sqrt { 3 } } \cdot \binom { v _ { A x } } { \sqrt { 3 } } = 0 \Rightarrow v _ { A x } = - 3 | |||||||||||||||||||||||||||||
| 3 \times 2 \cos 60 ^ { \circ } + 4 \times - 5 = 3 \times - 3 + 4 v _ { B x } | |||||||||||||||||||||||||||||
| v _ { B x } = - 2 | |||||||||||||||||||||||||||||
| e = \frac { - 2 - - 3 } { 2 \cos 60 ^ { \circ } - - 5 } | |||||||||||||||||||||||||||||
| e = \frac { 1 } { 6 } \text { or awrt } 0.17 \end{aligned}\) |
|
|
|
| |||||||||||||||||||||||||
|
|
| \(\begin{aligned} | 3 v _ { A x } + 4 v _ { B x } = - 17 | |||||||||||||||||||||||||
| v _ { B x } - v _ { A x } = 6 e \end{aligned}\) | |||||||||||||||||||||||||||||
| [7] | |||||||||||||||||||||||||||||