Questions Further AS Paper 2 Discrete (60 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA Further AS Paper 2 Discrete 2023 June Q7
2 marks
7 A construction company has built eight wind turbines on a moorland site. The network below shows nodes which represent the site entrance, \(E\), and the wind turbine positions, \(S , T , \ldots , Z\)
\includegraphics[max width=\textwidth, alt={}, center]{372edcfa-c3cd-4c83-89e9-2bb5fd9825f1-12_924_1294_479_356} Each arc represents an access track with its length given in metres.
These 17 tracks were created in order to build the wind turbines. Eight of the tracks are to be retained so that each turbine can be accessed for maintenance, directly or indirectly, from the site entrance. The other nine tracks will be removed. 7
    1. To save money the construction company wants to maximise the total length of the eight tracks to be retained. Determine which tracks the construction company should retain.
      7
  1. (ii) Find the total length of the eight tracks that are to be retained. 7
  2. The total length of the 17 tracks is 14.6 km
    The cost of removing all 17 tracks would be \(\pounds 87,600\)
    Using your answer to part (a)(ii), calculate an estimate for the cost of removing the nine tracks that will not be retained.
    [0pt] [2 marks]
    7
  3. Comment on why the modelling used in part (b) may not give an accurate estimate for the cost of removing the nine tracks.
AQA Further AS Paper 2 Discrete 2023 June Q8
8
  1. The graph \(G\) has 2 vertices. The sum of the degrees of all the vertices of \(G\) is 6 Draw \(G\) 8
  2. The planar graph \(P\) is Eulerian, with at least one vertex of degree \(x\), where \(x\) is a positive integer. Some of the properties of \(P\) are shown in the table below. Question number Additional page, if required. Write the question numbers in the left-hand margin. Question number Additional page, if required. Write the question numbers in the left-hand margin.
AQA Further AS Paper 2 Discrete Specimen Q1
1 A graph has 5 vertices and 6 edges.
Find the sum of the degrees of the vertices. Circle your answer. 10111215
AQA Further AS Paper 2 Discrete Specimen Q2
2 A connected planar graph has \(x\) vertices and \(2 x - 4\) edges.
Find the number of faces of the planar graph in terms of \(x\).
Circle your answer.
\(x - 6\)
\(x - 2\)
\(6 - x\)
\(2 - x\)
AQA Further AS Paper 2 Discrete Specimen Q3
2 marks
3 The function min \(( a , b )\) is defined by: $$\begin{aligned} \min ( a , b ) & = a , a < b
& = b , \text { otherwise } \end{aligned}$$ For example, \(\min ( 7,2 ) = 2\) and \(\min ( - 4,6 ) = - 4\). Gary claims that the binary operation \(\Delta\), which is defined as $$x \Delta y = \min ( x , y - 3 )$$ where \(x\) and \(y\) are real numbers, is associative as finding the smallest number is not affected by the order of operation. Disprove Gary's claim.
[0pt] [2 marks]
AQA Further AS Paper 2 Discrete Specimen Q4
4 marks
4 A communications company is conducting a feasibility study into the installation of underground television cables between 5 neighbouring districts. The length of the possible pathways for the television cables between each pair of districts, in miles, is shown in the table. The pathways all run alongside cycle tracks.
BillingeGarswoodHaydockOrrellUp Holland
Billinge-2.5***4.34.8
Garswood2.5-3.1***5.9
Haydock***3.1-6.77.8
Orrell4.3***6.7-2.1
Up Holland4.85.97.82.1-
4
  1. Give a possible reason, in context, why some of the table entries are labelled as ***. 4
  2. As part of the feasibility study, Sally, an engineer needs to assess each possible pathway between the districts. To do this, Sally decides to travel along every pathway using a bicycle, starting and finishing in the same district. From past experience, Sally knows that she can travel at an average speed of 12 miles per hour on a bicycle. Find the minimum time, in minutes, that it will take Sally to cycle along every pathway.
    [0pt] [4 marks]
AQA Further AS Paper 2 Discrete Specimen Q5
3 marks
5 Charlotte is visiting a city and plans to visit its five monuments: \(A , B , C , D\) and \(E\).
The network shows the time, in minutes, that a typical tourist would take to walk between the monuments on a busy weekday morning.
\includegraphics[max width=\textwidth, alt={}, center]{ba9e9840-ce27-4ca7-ab05-50461d135445-06_902_1134_529_543} Charlotte intends to walk from one monument to another until she has visited them all, before returning to her starting place. 5
  1. Use the nearest neighbour algorithm, starting from \(A\), to find an upper bound for the minimum time for Charlotte's tour.
    5
  2. By deleting vertex \(B\), find a lower bound for the minimum time for Charlotte's tour.
    [0pt] [3 marks]
    5
  3. Charlotte wants to complete the tour in 52 minutes. Use your answers to parts (a) and (b) to comment on whether this could be possible.
    5
  4. Charlotte takes 58 minutes to complete the tour. Evaluate your answers to part (a) and part (b) given this information.
    5
  5. Explain how this model for a typical tourist's tour may not be applicable if the tourist walked between the monuments during the evening.
AQA Further AS Paper 2 Discrete Specimen Q6
5 marks
6 Victoria and Albert play a zero-sum game. The game is represented by the following pay-off matrix for Victoria.
\multirow{2}{*}{}Albert
Strategy\(\boldsymbol { x }\)\(Y\)\(z\)
\multirow{3}{*}{Victoria}\(P\)3-11
\(Q\)-201
\(R\)4-1-1
6
  1. Find the play-safe strategies for each player.
    6
  2. State, with a reason, the strategy that Albert should never play.
    6
    1. Determine an optimal mixed strategy for Victoria.
      [0pt] [5 marks]
      6
  3. (ii) Find the value of the game for Victoria.
    6
  4. (iii) State an assumption that must made in order that your answer for part (c)(ii) is the maximum expected pay-off that Victoria can achieve.
AQA Further AS Paper 2 Discrete Specimen Q7
3 marks
7 The network shows a system of pipes, where \(S\) is the source and \(T\) is the sink.
The capacity, in litres per second, of each pipe is shown on each arc.
The cut shown in the diagram can be represented as \(\{ S , P , R \} , \{ Q , T \}\).
\includegraphics[max width=\textwidth, alt={}, center]{ba9e9840-ce27-4ca7-ab05-50461d135445-10_629_1168_616_557} 7
  1. Complete the table below to give the value of each of the 8 possible cuts.
    CutValue
    \{ S \}\(\{ P , Q , R , T \}\)31
    \(\{ S , P \}\)\(\{ Q , R , T \}\)32
    \(\{ S , Q \}\)\(\{ P , R , T \}\)
    \(\{ S , R \}\)\(\{ P , Q , T \}\)
    \(\{ S , P , Q \}\)\(\{ R , T \}\)30
    \(\{ S , P , R \}\)\(\{ Q , T \}\)37
    \(\{ S , Q , R \}\)\(\{ P , T \}\)35
    \(\{ S , P , Q , R \}\)\(\{ T \}\)30
    7
  2. State the value of the maximum flow through the network. Give a reason for your answer.
    [0pt] [1 mark] 7
  3. Indicate on Figure 1 a possible flow along each arc, corresponding to the maximum flow through the network.
    [0pt] [2 marks] \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{ba9e9840-ce27-4ca7-ab05-50461d135445-11_618_1150_1260_557}
    \end{figure}
AQA Further AS Paper 2 Discrete Specimen Q8
8 marks
8 A family business makes and sells two kinds of kitchen table.
Each pine table takes 6 hours to make and the cost of materials is \(\pounds 30\).
Each oak table takes 10 hours to make and the cost of materials is \(\pounds 70\).
Each month, the business has 360 hours available for making the tables and \(\pounds 2100\) available for the materials.
Each month, the business sells all of its tables to a wholesaler.
The wholesaler specifies that it requires at least 10 oak tables per month and at least as many pine tables as oak tables. Each pine table sold gives the business a profit of \(\pounds 40\) and each oak table sold gives the business a profit of \(\pounds 75\). Use a graphical method to find the number of each type of table the business should make each month, in order to maximise its total profit. Show clearly how you obtain your answer.
[0pt] [8 marks]
-T...,T-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_24_64_421_1323}-T.....T
T\multirow{2}{*}{}TolooloTTo
-T
-
\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_43_351_660_197}
--
\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_52_208_752_200}
-- →Tou------T ----,-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_27_77_934_1310}- -T\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_47_169_898_1567}T
-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_24_147_950_738}-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_45_261_946_1475}T
--
-.
"
"
"
,,
- - ---\multirow{4}{*}{}\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_29_150_1450_1310}-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_24_169_1448_1567}T
-- -
- - - - - --T --
-\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_44_183_1637_536}- --
\(\%\)
- 1
- 1
-T- - -\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_35_171_2116_1319}\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_41_250_2104_1485}L
-- - - -\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_38_158_2143_729}---
--\includegraphics[max width=\textwidth, alt={}]{ba9e9840-ce27-4ca7-ab05-50461d135445-13_45_183_2281_536}------------ --T