8.
Martin tried to find all the solutions of \(4 \sin ^ { 2 } \theta \cos ^ { 2 } \theta - \cos ^ { 2 } \theta = 0\) for \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\)
His working is shown below:
$$\begin{aligned}
& 4 \sin ^ { 2 } \theta \cos ^ { 2 } \theta - \cos ^ { 2 } \theta = 0
& \Rightarrow 4 \sin ^ { 2 } \theta \cos ^ { 2 } \theta = \cos ^ { 2 } \theta
& \Rightarrow 4 \sin ^ { 2 } \theta = 1
& \Rightarrow \sin ^ { 2 } \theta = \frac { 1 } { 4 }
& \Rightarrow \sin \theta = \frac { 1 } { 2 }
& \Rightarrow \theta = 30 ^ { \circ } , 150 ^ { \circ }
\end{aligned}$$
Martin did not find all the correct solutions because he made two errors.
- Identify the two errors and explain the consequence of each error.
[0pt]
[4 marks] - Find all the solutions that Martin did not find.