Questions — SPS SPS FM (245 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
SPS SPS FM 2020 October Q9
9. In this question you must show detailed reasoning. A sequence \(t _ { 1 } , t _ { 2 } , t _ { 3 } \ldots\) is defined by \(t _ { n } = 5 - 2 n\).
Use an algebraic method to find the smallest value of \(N\) such that $$\sum _ { n = 1 } ^ { \infty } 2 ^ { t _ { n } } - \sum _ { n = 1 } ^ { N } 2 ^ { t _ { n } } < 10 ^ { - 8 }$$
SPS SPS FM 2021 March Q1
  1. Differentiate the following with respect to \(x\), simplifying your answers fully
    a) \(y = e ^ { 3 x } + \ln 2 x\)
    b) \(y = \left( 5 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } }\)
    c) \(y = \frac { 2 x } { \left( 5 - 3 x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } }\)
    d) \(y = e ^ { - \frac { 8 } { 3 } x } \ln \left( 1 + x ^ { 3 } \right)\)
  1. Express \(2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta }\) in terms of \(\sec \theta\).
  2. Hence solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta } = 4$$
SPS SPS FM 2021 March Q3
3. $$\mathrm { f } ( x ) = x ^ { 2 } - 2 x - 3 , x \in \mathbb { R } , x \geq 1$$
  1. Write down the domain and range of \(\mathrm { f } ^ { - 1 }\).
  2. Sketch the graph of \(\mathrm { f } ^ { - 1 }\), indicating clearly the coordinates of any point at which the graph intersects the coordinate axes.
  3. Find the gradient of \(f ^ { - 1 } ( x )\) when \(f ^ { - 1 } ( x ) = \frac { 5 } { 3 }\)
SPS SPS FM 2021 March Q4
4.
\includegraphics[max width=\textwidth, alt={}, center]{ef0c9a48-9d23-48ed-89b8-2e116114d7ed-07_527_718_191_651} The diagram shows the curves \(y = \mathrm { e } ^ { 3 x }\) and \(y = ( 2 x - 1 ) ^ { 4 }\). The shaded region is bounded by the two curves and the line \(x = \frac { 1 } { 2 }\). The shaded region is rotated completely about the \(x\)-axis. Find the exact volume of the solid produced.
SPS SPS FM 2021 March Q5
5. (a) Express \(2 \cos \theta + 5 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the values of \(R\) and \(\alpha\) to 3 significant figures. The temperature \(T ^ { \circ } \mathrm { C }\), of an unheated building is modelled using the equation $$T = 15 + 2 \cos \left( \frac { \pi t } { 12 } \right) + 5 \sin \left( \frac { \pi t } { 12 } \right) , \quad 0 \leq t < 24$$ where \(t\) hours is the number of hours after 1200 .
(b) Calculate the maximum temperature predicted by this model and the value of \(t\) when this maximum occurs.
(c) Calculate, to the nearest half hour, the times when the temperature is predicted to be \(12 ^ { \circ } \mathrm { C }\).
SPS SPS FM 2021 March Q6
6. $$\mathbf { M } = \left( \begin{array} { l l } 2 & 3
0 & 1 \end{array} \right) .$$ Prove by induction that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 3 \left( 2 ^ { n } - 1 \right)
0 & 1 \end{array} \right)\), for all positive integers \(n\).
SPS SPS FM 2021 March Q7
7. This is the graph of \(y = \frac { 5 } { 4 x - 3 } - \frac { 3 } { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{ef0c9a48-9d23-48ed-89b8-2e116114d7ed-10_513_547_207_817} Find the area between the graph, the \(x\) axis, and the lines \(x = 1\) and \(x = 7\) in the form \(a \ln b + c\) where \(a , b , c \in Q\)
SPS SPS FM 2021 March Q8
8. The function f is defined, for any complex number \(z\), by $$\mathrm { f } ( z ) = \frac { \mathrm { i } z - 1 } { \mathrm { i } z + 1 }$$ Suppose throughout that \(x\) is a real number.
  1. Show that $$\operatorname { Re } f ( x ) = \frac { x ^ { 2 } - 1 } { x ^ { 2 } + 1 } \quad \text { and } \quad \operatorname { Im } f ( x ) = \frac { 2 x } { x ^ { 2 } + 1 }$$
  2. Show that \(\mathrm { f } ( x ) \mathrm { f } ( x ) ^ { * } = 1\), where \(\mathrm { f } ( x ) ^ { * }\) is the complex conjugate of \(\mathrm { f } ( x )\).
SPS SPS FM 2021 April Q1
  1. i) Differentiate the following with respect to \(x\), simplifying your answers fully
    a) \(y = e ^ { 3 x } + \ln 2 x\)
    b) \(y = \left( 5 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } }\)
    c) \(y = \frac { 2 x } { \left( 5 - 3 x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } }\)
    d) \(y = e ^ { - \frac { 8 } { 3 } x } \ln \left( 1 + x ^ { 3 } \right)\)
    ii) Integrate with respect to \(x\)
\begin{displayquote}
  1. \(\frac { 7 } { ( 2 x - 5 ) ^ { 5 } } - \frac { 3 } { 2 x - 5 }\)
  2. \(\frac { 4 x ^ { 2 } + 5 x - 3 } { 2 x - 5 }\) \end{displayquote}
SPS SPS FM 2021 April Q2
  1. solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation
$$2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta } = 4$$
SPS SPS FM 2021 April Q3
3. $$\mathrm { f } ( x ) = x ^ { 2 } - 2 x - 3 , x \in \mathbb { R } , x \geq 1$$
  1. Write down the domain and range of \(\mathrm { f } ^ { - 1 }\).
  2. Sketch the graph of \(\mathrm { f } ^ { - 1 }\), indicating clearly the coordinates of any point at which the graph intersects the coordinate axes.
  3. Find the gradient of \(f ^ { - 1 } ( x )\) when \(f ^ { - 1 } ( x ) = - \frac { 5 } { 3 }\)
SPS SPS FM 2021 April Q4
4.
\includegraphics[max width=\textwidth, alt={}, center]{11e1fe10-7d93-4a49-9151-83b40391a329-07_520_714_196_653} The diagram shows the curves \(y = \mathrm { e } ^ { 3 x }\) and \(y = ( 2 x - 1 ) ^ { 4 }\). The shaded region is bounded by the two curves and the line \(x = \frac { 1 } { 2 }\). The shaded region is rotated completely about the \(x\)-axis. Find the exact volume of the solid produced.
SPS SPS FM 2021 April Q6
6. This is the graph of \(y = \frac { 5 } { 4 x - 3 } - \frac { 3 } { 2 }\)
\includegraphics[max width=\textwidth, alt={}, center]{11e1fe10-7d93-4a49-9151-83b40391a329-09_753_917_301_630} Find the area between the graph, the \(x\) axis, and the lines \(x = 1\) and \(x = 7\) in the form \(a \ln b + c\) where \(a , b , c \in Q\)
SPS SPS FM 2021 April Q7
7. $$\mathbf { M } = \left( \begin{array} { l l } 2 & 3
0 & 1 \end{array} \right) .$$ Prove by induction that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 3 \left( 2 ^ { n } - 1 \right)
0 & 1 \end{array} \right)\), for all positive integers \(n\).
SPS SPS FM 2021 April Q8
8. The function f is defined, for any complex number \(z\), by $$\mathrm { f } ( z ) = \frac { \mathrm { i } z - 1 } { \mathrm { i } z + 1 }$$ Suppose throughout that \(x\) is a real number.
  1. Show that $$\operatorname { Re } f ( x ) = \frac { x ^ { 2 } - 1 } { x ^ { 2 } + 1 } \quad \text { and } \quad \operatorname { Im } f ( x ) = \frac { 2 x } { x ^ { 2 } + 1 }$$
  2. Show that \(\mathrm { f } ( x ) \mathrm { f } ( x ) ^ { * } = 1\), where \(\mathrm { f } ( x ) ^ { * }\) is the complex conjugate of \(\mathrm { f } ( x )\). Spare Paper
SPS SPS FM 2020 September Q1
  1. Vectors \(\overrightarrow { A B }\) and \(\overrightarrow { B C }\) are given by
$$\overrightarrow { A B } = \left( \begin{array} { r } 2 p
q
4 \end{array} \right) \quad \overrightarrow { B C } = \left( \begin{array} { r } q
- 3 p
SPS SPS FM 2020 September Q2
2 \end{array} \right)$$ where \(p\) and \(q\) are constants.
Given that \(\overrightarrow { A C }\) is parallel to \(\left( \begin{array} { r } 3
- 4
3 \end{array} \right)\), find the value of \(p\) and the value of \(q\).
2. A sequence of numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$\begin{aligned} a _ { 1 } & = 3
a _ { n + 1 } & = \frac { a _ { n } - 3 } { a _ { n } - 2 } , \quad n \in \mathbb { N } \end{aligned}$$
  1. Find \(\sum _ { r = 1 } ^ { 100 } a _ { r }\)
  2. Hence find \(\sum _ { r = 1 } ^ { 100 } a _ { r } + \sum _ { r = 1 } ^ { 99 } a _ { r }\)
SPS SPS FM 2020 September Q4
4 \end{array} \right) \quad \overrightarrow { B C } = \left( \begin{array} { r } q
- 3 p
2 \end{array} \right)$$ where \(p\) and \(q\) are constants.
Given that \(\overrightarrow { A C }\) is parallel to \(\left( \begin{array} { r } 3
- 4
3 \end{array} \right)\), find the value of \(p\) and the value of \(q\).
2. A sequence of numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$\begin{aligned} a _ { 1 } & = 3
a _ { n + 1 } & = \frac { a _ { n } - 3 } { a _ { n } - 2 } , \quad n \in \mathbb { N } \end{aligned}$$
  1. Find \(\sum _ { r = 1 } ^ { 100 } a _ { r }\)
  2. Hence find \(\sum _ { r = 1 } ^ { 100 } a _ { r } + \sum _ { r = 1 } ^ { 99 } a _ { r }\)
    3. Using algebraic integration and making your method clear, find the exact value of $$\int _ { 1 } ^ { 5 } \frac { 4 x + 9 } { x + 3 } d x = a + \ln b$$ where \(a\) and \(b\) are constants to be found
    (4)
    4.
  3. Given that \(\theta\) is small, use the small angle approximation for \(\cos \theta\) to show that $$1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta \approx 8 - 5 \theta ^ { 2 }$$ Adele uses \(\theta = 5 ^ { \circ }\) to test the approximation in part (a). Adele's working is shown below. \begin{displayquote} Using my calculator, \(1 + 4 \cos \left( 5 ^ { \circ } \right) + 3 \cos ^ { 2 } \left( 5 ^ { \circ } \right) = 7.962\), to 3 decimal places.
    Using the approximation \(8 - 5 \theta ^ { 2 }\) gives \(8 - 5 ( 5 ) ^ { 2 } = - 117\) \end{displayquote} \begin{displayquote} Therefore, \(1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta \approx 8 - 5 \theta ^ { 2 }\) is not true for \(\theta = 5 ^ { \circ }\)
    1. Identify the mistake made by Adele in her working.
    2. Show that \(8 - 5 \theta ^ { 2 }\) can be used to give a good approximation to \(1 + 4 \cos \theta + 3 \cos ^ { 2 } \theta\) for an angle of size \(5 ^ { \circ }\) \end{displayquote}
SPS SPS FM 2020 September Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5739a9ae-d1ed-4c9d-a912-587ece5e9627-08_732_780_139_621} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of the curve with parametric equations $$x = 3 \cos 2 t , \quad y = 2 \tan t , \quad 0 \leq t \leq \frac { \pi } { 4 } .$$ The region \(R\), shown shaded in Figure 5, is bounded by the curve, the \(x\)-axis and the \(y\)-axis.
  1. Show that the area of \(R\) is given $$\int _ { 0 } ^ { \frac { \pi } { 4 } } 24 \sin ^ { 2 } t \mathrm {~d} t$$
  2. Hence, using algebraic integration, find the exact area of \(R\).
SPS SPS FM 2020 September Q6
6. A sequence is defined by \(U _ { n } = 2 ^ { n + 1 } + 9 \times 13 ^ { n }\) for positive integer values of \(n\). Prove by induction that \(U _ { n }\) is divisible by 11 .
(5)
SPS SPS FM 2020 September Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5739a9ae-d1ed-4c9d-a912-587ece5e9627-12_636_1112_392_529} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve with equation $$y = 2 \mathrm { e } ^ { 2 x } - x \mathrm { e } ^ { 2 x } , \quad x \in \mathbb { R }$$ The finite region \(R\), shown shaded in Figure 4, is bounded by the curve, the \(x\)-axis and the \(y\)-axis. Use calculus to show that the exact area of \(R\) can be written in the form \(p \mathrm { e } ^ { 4 } + q\), where \(p\) and \(q\) are rational constants to be found.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
SPS SPS FM 2020 September Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5739a9ae-d1ed-4c9d-a912-587ece5e9627-14_816_1274_203_456} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\).
The curve \(C\) crosses the \(x\)-axis at the origin, \(O\), and at the points \(A\) and \(B\) as shown in Figure 5. Given that $$f ^ { \prime } ( x ) = k - 4 x - 3 x ^ { 2 }$$ where \(k\) is constant,
  1. show that \(C\) has a point of inflection at \(x = - \frac { 2 } { 3 }\) Given also that the distance \(A B = 4 \sqrt { 2 }\)
  2. find, showing your working, the integer value of \(k\).
    (5)
SPS SPS FM 2020 September Q9
9. Show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \frac { \sin 2 \theta } { 1 + \cos \theta } d \theta = 2 - 2 \ln 2$$
SPS SPS FM 2020 September Q10
10. A curve \(C\) is given by the equation $$\sin x + \cos y = 0.5 \quad - \frac { \pi } { 2 } \leqslant x < \frac { 3 \pi } { 2 } , - \pi < y < \pi$$ A point \(P\) lies on \(C\). The tangent to \(C\) at the point \(P\) is parallel to the \(x\)-axis. Find the exact coordinates of all possible points \(P\), justifying your answer.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
SPS SPS FM 2020 September Q11
11. Find the invariant line of the transformation of the \(x - y\) plane represented by the matrix \(\left( \begin{array} { c c } 2 & 0
4 & - 1 \end{array} \right)\)