A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Differentiating Transcendental Functions
Q1
SPS SPS FM 2021 March — Question 1
Exam Board
SPS
Module
SPS FM (SPS FM)
Year
2021
Session
March
Topic
Differentiating Transcendental Functions
Differentiate the following with respect to \(x\), simplifying your answers fully
a) \(y = e ^ { 3 x } + \ln 2 x\)
b) \(y = \left( 5 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } }\)
c) \(y = \frac { 2 x } { \left( 5 - 3 x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } }\)
d) \(y = e ^ { - \frac { 8 } { 3 } x } \ln \left( 1 + x ^ { 3 } \right)\)
Express \(2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta }\) in terms of \(\sec \theta\).
Hence solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$2 \tan ^ { 2 } \theta - \frac { 1 } { \cos \theta } = 4$$
This paper
(7 questions)
View full paper
Q1
Q3
Q4
Q5
Q6
Q7
Q8