Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q2
7 marks Standard +0.3
2 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\).
OCR MEI C3 Q3
17 marks Moderate -0.3
3 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + \sin 2 x\) for \(- \frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 4 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b7588524-8a5e-42af-8b52-29cdddc09eeb-2_577_820_1114_675} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. State a sequence of two transformations that would map part of the curve \(y = \sin x\) onto the curve \(y = \mathrm { f } ( x )\).
  2. Find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = \frac { 1 } { 4 } \pi\).
  3. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 0,1 )\). Hence write down the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
  4. State the domain of \(\mathrm { f } ^ { - 1 } ( x )\). Add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
  5. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
OCR MEI C3 Q1
6 marks Standard +0.8
1 Fig. 1 shows part of the curve \(y = \mathrm { e } ^ { 2 x } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-1_669_1032_459_538} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Find the coordinates of the turning point P .
OCR MEI C3 Q2
5 marks Standard +0.3
2 Find the exact gradient of the curve \(y = \ln ( 1 - \cos 2 x )\) at the point with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\).
OCR MEI C3 Q3
6 marks Standard +0.3
3
  1. Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence show that the curve \(y = \mathrm { e } ^ { - x } \sin 2 x\) has a stationary point when \(x = \frac { 1 } { 2 } \arctan 2\).
OCR MEI C3 Q4
17 marks Standard +0.3
4 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-2_687_888_419_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). [4] It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
  2. Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
  3. By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
  4. Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).
OCR MEI C3 Q5
3 marks Standard +0.3
5 Differentiate \(x ^ { 2 } \tan 2 x\).
OCR MEI C3 Q6
4 marks Moderate -0.8
6 Given that \(y = \sqrt [ 3 ] { 1 + x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
OCR MEI C3 Q7
5 marks Moderate -0.3
7 Given that \(y = x ^ { 2 } \sqrt { 1 + 4 x }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x ( 5 x + 1 ) } { \sqrt { 1 + 4 x } }\).
OCR MEI C3 Q1
18 marks Standard +0.8
1 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2437cecc-f084-4e49-ab36-1c132ba13267-1_480_1058_364_578} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } + 2 }\).
  1. Show algebraically that \(\mathrm { f } ( x )\) is an even function, and state how this property relates to the curve \(y = \mathrm { f } ( x )\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Show that \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } }\).
  4. Hence, using the substitution \(u = \mathrm { e } ^ { x } + 1\), or otherwise, find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, and the lines \(x = 0\) and \(x = 1\).
  5. Show that there is only one point of intersection of the curves \(y = \mathrm { f } ( x )\) and \(y = \frac { 1 } { 4 } \mathrm { e } ^ { x }\), and find its coordinates.
OCR MEI C3 Q2
3 marks Easy -1.2
2 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
OCR MEI C3 Q3
7 marks Standard +0.3
3
  1. Differentiate \(x \cos 2 x\) with respect to \(x\).
  2. Integrate \(x \cos 2 x\) with respect to \(x\).
OCR MEI C3 Q4
18 marks Standard +0.3
4 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2437cecc-f084-4e49-ab36-1c132ba13267-2_652_795_876_717} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.
OCR MEI C3 Q1
18 marks Standard +0.3
1 Fig. 9 shows the curve \(y = \frac { x ^ { 2 } } { 3 x - 1 }\).
P is a turning point, and the curve has a vertical asymptote \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-1_835_1474_591_372} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ( 3 x - 2 ) } { ( 3 x - 1 ) ^ { 2 } }\).
  3. Find the exact coordinates of the turning point P . Calculate the gradient of the curve when \(x = 0.6\) and \(x = 0.8\), and hence verify that P is a minimum point.
  4. Using the substitution \(u = 3 x - 1\), show that \(\int \frac { x ^ { 2 } } { 3 x - 1 } \mathrm {~d} x = \frac { 1 } { 27 } \int \left( u + 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = \frac { 2 } { 3 }\) and \(x = 1\).
OCR MEI C3 Q2
4 marks Moderate -0.8
2 Differentiate \(\sqrt [ 3 ] { 1 + 6 x ^ { 2 } }\).
OCR MEI C3 Q3
6 marks Moderate -0.5
3 Show that the curve \(y = x ^ { 2 } \ln x\) has a stationary point when \(x = \frac { 1 } { \sqrt { \mathrm { e } } }\).
OCR MEI C3 Q4
8 marks Moderate -0.3
4 The equation of a curve is \(y = \frac { x ^ { 2 } } { 2 x + 1 }\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x ( x + 1 ) } { ( 2 x + 1 ) ^ { 2 } }\).
  2. Find the coordinates of the stationary points of the curve. You need not determine their nature.
  3. Differentiate \(\sqrt { 1 + 2 x }\).
  4. Show that the derivative of \(\ln \left( 1 - \mathrm { e } ^ { - x } \right)\) is \(\frac { 1 } { \mathrm { e } ^ { x } - 1 }\).
OCR MEI C3 Q6
18 marks Standard +0.8
6 The function \(\mathrm { f } ( x ) = \frac { \sin x } { 2 - \cos x }\) has domain \(- \pi \leqslant x \leqslant \pi\).
Fig. 8 shows the graph of \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-3_557_844_602_646} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ( - x )\) in terms of \(\mathrm { f } ( x )\). Hence sketch the graph of \(y = \mathrm { f } ( x )\) for the complete domain \(- \pi \leqslant x \leqslant \pi\).
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 \cos x - 1 } { ( 2 - \cos x ) ^ { 2 } }\). Hence find the exact coordinates of the turning point P . State the range of the function \(\mathrm { f } ( x )\), giving your answer exactly.
  3. Using the substitution \(u = 2 - \cos x\) or otherwise, find the exact value of \(\int _ { 0 } ^ { \pi } \frac { \sin x } { 2 \cos x } \mathrm {~d} x\).
  4. Sketch the graph of \(y = \mathrm { f } ( 2 x )\).
  5. Using your answers to parts (iii) and (iv), write down the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 2 \cos 2 x } \mathrm {~d} x\).
OCR MEI C3 Q7
7 marks Standard +0.3
7 Fig. 3 shows the curve defined by the equation \(y = \arcsin ( x - 1 )\), for \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-4_681_542_498_794} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Find \(x\) in terms of \(y\), and show that \(\frac { \mathrm { d } x } { \mathrm {~d} y } = \cos y\).
  2. Hence find the exact gradient of the curve at the point where \(x = 1.5\).
OCR MEI C3 Q8
7 marks Standard +0.3
8 A curve has equation \(y = \frac { x } { 2 + 3 \ln x }\). Find \(\frac { d y } { d x }\). Hence find the exact coordinates of the stationary point of the curve.
OCR MEI C3 Q1
18 marks Standard +0.3
1 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-1_961_1473_445_320} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
OCR MEI C3 Q2
18 marks Challenging +1.2
2 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-2_433_979_472_591} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve. END OF QUESTION PAPER
OCR MEI C3 Q3
18 marks Challenging +1.2
3
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-3_830_806_907_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 Q1
17 marks Standard +0.3
1 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{65ac8807-cd93-450f-adb5-dc6864f8470c-1_720_834_578_681} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
OCR MEI C3 Q2
19 marks Moderate -0.3
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{65ac8807-cd93-450f-adb5-dc6864f8470c-2_595_1230_445_496} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?