Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q7
6 marks Moderate -0.5
7 An oil slick is circular with radius \(r \mathrm {~km}\) and area \(A \mathrm {~km} ^ { 2 }\). The radius increases with time at a rate given by \(\frac { \mathrm { d } r } { \mathrm {~d} t } = 0.5\), in kilometres per hour.
  1. Show that \(\frac { \mathrm { dA } } { \mathrm { d } t } = \pi r\).
  2. Find the rate of increase of the area of the slick at a time when the radius is 6 km .
OCR MEI C3 Q8
18 marks Standard +0.3
8 Fig. 8 shows the graph of \(y = x \sqrt { 1 + x }\). The point P on the curve is on the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7998a08-229a-40d2-ba34-b5f264139295-3_433_800_895_587} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of P .
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x + 2 } { 2 \sqrt { 1 + x } }\).
  3. Hence find the coordinates of the turning point on the curve. What can you say about the gradient of the curve at P ?
  4. By using a suitable substitution, show that \(\int _ { - 1 } ^ { 0 } x \sqrt { 1 + x } \mathrm {~d} x = \int _ { 0 } ^ { 1 } \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u\). Evaluate this integral, giving your answer in an exact form.
    What does this value represent?
  5. Use your answer to part (ii) to differentiate \(y = x \sqrt { 1 + x } \sin 2 x\) with respect to \(x\).
    (You need not simplify your result.)
OCR MEI C3 Q9
18 marks Moderate -0.8
9 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = 2 x - 1$$ for all real values of \(x\).
  1. State the ranges of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Explain why \(\mathrm { f } ( x )\) has no inverse.
  2. Find an expression for the inverse function \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\). Sketch the graphs of \(y = \mathrm { g } ( x )\) and \(y = \mathrm { g } ^ { - 1 } ( x )\) on the same axes.
  3. Find expressions for \(\operatorname { gf } ( x )\) and \(\operatorname { fg } ( x )\).
  4. Solve the equation \(\operatorname { gf } ( x ) = \mathrm { fg } ( x )\). Sketch the graphs of \(y = \operatorname { gf } ( x )\) and \(y = \operatorname { fg } ( x )\) on the same axes to illustrate your answer.
  5. Show that the equation \(\mathrm { f } ( x + a ) = \mathrm { g } ^ { 2 } ( x )\) has no solution if \(a > \frac { 1 } { 4 }\).
OCR MEI C3 Q1
4 marks Moderate -0.5
1 Find \(\int \sqrt [ 3 ] { 2 x - 1 } \mathrm {~d} x\).
OCR MEI C3 Q2
18 marks Standard +0.3
2 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-1_959_1469_748_317} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
OCR MEI C3 Q3
3 marks Moderate -0.8
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) \mathrm { d } x\), giving your answer in exact form.
OCR MEI C3 Q4
18 marks Challenging +1.2
4 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-2_431_977_728_602} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve.
OCR MEI C3 Q5
5 marks Standard +0.3
5 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
OCR MEI C3 Q1
18 marks Standard +0.3
1 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = ( 1 - x ) \mathrm { e } ^ { 2 x }\), with its turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-1_722_817_450_642} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the intercepts of \(y = \mathrm { f } ( x )\) with the \(x\) - and \(y\)-axes.
  2. Find the exact coordinates of the turning point P .
  3. Show that the exact area of the region enclosed by the curve and the \(x\) - and \(y\)-axes is \(\frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 } - 3 \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  4. Express \(\mathrm { g } ( x )\) in terms of \(x\). Sketch the curve \(y = \mathrm { g } ( x )\) on the copy of Fig. 8, indicating the coordinates of its intercepts with the \(x\) - and \(y\)-axes and of its turning point.
  5. Write down the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\) and the \(x\) - and \(y\)-axes.
OCR MEI C3 Q2
18 marks Standard +0.8
2 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-2_754_870_478_609} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR MEI C3 Q3
18 marks Challenging +1.2
3 Fig. 9 shows the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\). The function \(y = \mathrm { f } ( x )\) is given by $$f ( x ) = \ln \left( \frac { 2 x } { 1 + x } \right) , x > 0$$ The curve \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis at P , and the line \(x = 2\) at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-3_559_644_622_745} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 1 . Find the exact \(y\)-coordinate of Q .
  2. Find the gradient of the curve at P. [Hint: use \(\ln \frac { a } { b } = \ln a - \ln b\).] The function \(\mathrm { g } ( x )\) is given by $$\mathrm { g } ( x ) = \frac { \mathrm { e } ^ { x } } { 2 - \mathrm { e } ^ { x } } , \quad x < \ln 2 .$$ The curve \(y = \mathrm { g } ( x )\) crosses the \(y\)-axis at the point R .
  3. Show that \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\). Write down the gradient of \(y = \mathrm { g } ( x )\) at R .
  4. Show, using the substitution \(u = 2 - \mathrm { e } ^ { x }\) or otherwise, that \(\int _ { 0 } ^ { \ln \frac { 4 } { 3 } } \mathrm {~g} ( x ) \mathrm { d } x = \ln \frac { 3 } { 2 }\). Using this result, show that the exact area of the shaded region shown in Fig. 9 is \(\ln \frac { 32 } { 27 }\). [Hint: consider its reflection in \(y = x\).]
OCR MEI C3 Q1
5 marks Moderate -0.3
1 Show that \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 3 x - 2 } } \mathrm {~d} x = \frac { 2 } { 3 }\).
OCR MEI C3 Q2
23 marks Standard +0.3
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), which has a \(y\)-intercept at \(\mathrm { P } ( 0,3 )\), a minimum point at \(\mathrm { Q } ( 1,2 )\), and an asymptote \(x = - 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-1_904_937_785_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of the images of the points P and Q when the curve \(y = \mathrm { f } ( x )\) is transformed to
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( x + 1 ) + 2\). You are now given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { x + 1 } , x \neq - 1\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence find the coordinates of the other turning point on the curve \(y = \mathrm { f } ( x )\).
  3. Show that \(\mathrm { f } ( x - 1 ) = x - 2 + \frac { 4 } { x }\).
  4. Find \(\int _ { a } ^ { b } \left( x - 2 + \frac { 4 } { x } \right) \mathrm { d } x\) in terms of \(a\) and \(b\). Hence, by choosing suitable values for \(a\) and \(b\), find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\).
OCR MEI C3 Q3
3 marks Moderate -0.8
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
[0pt] [3]
OCR MEI C3 Q4
18 marks Standard +0.8
4 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-2_824_816_885_699} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(y\)-coordinate of P .
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
  3. Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
  4. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
OCR MEI C3 Q1
6 marks Moderate -0.3
1 A curve has implicit equation \(y ^ { 2 } + 2 x \ln y = x ^ { 2 }\).
Verify that the point \(( 1,1 )\) lies on the curve, and find the gradient of the curve at this point.
OCR MEI C3 Q2
6 marks Standard +0.3
2 A curve has equation \(x ^ { 2 } + 2 y ^ { 2 } = 4 x\).
  1. By differentiating implicitly, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
    [0pt]
  2. Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]
OCR MEI C3 Q3
4 marks Moderate -0.3
3 Given that \(y = \ln \left( \sqrt { \frac { 2 x - 1 } { 2 x + 1 } } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 x - 1 } - \frac { 1 } { 2 x + 1 }\).
OCR MEI C3 Q4
8 marks Standard +0.8
4 Fig. 7 shows the curve \(x ^ { 3 } + y ^ { 3 } = 3 x y\). The point P is a turning point of the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{09d318c7-27b9-43aa-b4a0-e32ea8bd53c5-1_593_531_1573_805} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x ^ { 2 } } { y ^ { 2 } - x }\).
  2. Hence find the exact \(x\)-coordinate of P .
OCR MEI C3 Q5
4 marks Standard +0.3
5 Find the gradient at the point \(( 0 , \ln 2 )\) on the curve with equation \(\mathrm { e } ^ { 2 y } = 5 - \mathrm { e } ^ { - x }\).
OCR MEI C3 Q6
4 marks Moderate -0.3
6 A curve is defined by the equation \(( x + y ) ^ { 2 } = 4 x\). The point \(( 1,1 )\) lies on this curve.
By differentiating implicitly, show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x + y } - 1\).
Hence verify that the curve has a stationary point at \(( 1,1 )\).
OCR MEI C3 Q7
6 marks Moderate -0.3
7 A curve is defined by the equation \(\sin 2 x + \cos y = \sqrt { 3 }\).
  1. Verify that the point \(\mathrm { P } \left( \frac { 1 } { 6 } \pi , \frac { 1 } { 6 } \pi \right)\) lies on the curve.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point P .
OCR MEI C3 Q8
7 marks Moderate -0.3
8
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
OCR MEI C3 Q1
7 marks Moderate -0.3
1
  1. Differentiate \(\sqrt { 1 + 3 x ^ { 2 } }\).
  2. Hence show that the derivative of \(x \sqrt { 1 + 3 x ^ { 2 } }\) is \(\frac { 1 + 6 x ^ { 2 } } { \sqrt { 1 + 3 x ^ { 2 } } }\).
OCR MEI C3 Q2
7 marks Standard +0.3
2 Given that \(y ^ { 3 } = x y - x ^ { 2 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y ^ { 2 } - x }\).
Hence show that the curve \(y ^ { 3 } = x y - x ^ { 2 }\) has a stationary point when \(x = \frac { 1 } { 8 }\).