Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI S1 2005 June Q6
6 Answer part (i) of this question on the insert provided. Mancaster Hockey Club invite prospective new players to take part in a series of three trial games. At the end of each game the performance of each player is assessed as pass or fail. Players who achieve a pass in all three games are invited to join the first team squad. Players who achieve a pass in two games are invited to join the second team squad. Players who fail in two games are asked to leave. This may happen after two games.
  • The probability of passing the first game is 0.9
  • Players who pass any game have probability 0.9 of passing the next game
  • Players who fail any game have probability 0.5 of failing the next game
    1. On the insert, complete the tree diagram which illustrates the information above.
      \includegraphics[max width=\textwidth, alt={}, center]{668963b4-994d-475a-a1c8-c3e3a252e4e6-4_691_1329_978_397}
    2. Find the probability that a randomly selected player
      (A) is invited to join the first team squad,
      (B) is invited to join the second team squad.
    3. Hence write down the probability that a randomly selected player is asked to leave.
    4. Find the probability that a randomly selected player is asked to leave after two games, given that the player is asked to leave.
Angela, Bryony and Shareen attend the trials at the same time. Assuming their performances are independent, find the probability that
  • at least one of the three is asked to leave,
  • they pass a total of 7 games between them.
  • OCR MEI S1 Q3
    3 Answer part (i) of this question on the insert provided. A taxi driver operates from a taxi rank at a main railway station in London. During one particular week he makes 120 journeys, the lengths of which are summarised in the table.
    Length
    \(( x\) miles \()\)
    \(0 < x \leqslant 1\)\(1 < x \leqslant 2\)\(2 < x \leqslant 3\)\(3 < x \leqslant 4\)\(4 < x \leqslant 6\)\(6 < x \leqslant 10\)
    Number of
    journeys
    3830211498
    1. On the insert, draw a cumulative frequency diagram to illustrate the data.
    2. Use your graph to estimate the median length of journey and the quartiles. Hence find the interquartile range.
    3. State the type of skewness of the distribution of the data.
    OCR MEI S1 Q4
    4 Answer part (i) of this question on the insert provided. Mancaster Hockey Club invite prospective new players to take part in a series of three trial games. At the end of each game the performance of each player is assessed as pass or fail. Players who achieve a pass in all three games are invited to join the first team squad. Players who achieve a pass in two games are invited to join the second team squad. Players who fail in two games are asked to leave. This may happen after two games.
    • The probability of passing the first game is 0.9
    • Players who pass any game have probability 0.9 of passing the next game
    • Players who fail any game have probability 0.5 of failing the next game
      1. On the insert, complete the tree diagram which illustrates the information above.
        \includegraphics[max width=\textwidth, alt={}, center]{64f25a40-d3bf-4212-b92e-655f980c702b-4_643_1239_942_417}
      2. Find the probability that a randomly selected player
        (A) is invited to join the first team squad,
        (B) is invited to join the second team squad.
      3. Hence write down the probability that a randomly selected player is asked to leave.
      4. Find the probability that a randomly selected player is asked to leave after two games, given that the player is asked to leave.
    Angela, Bryony and Shareen attend the trials at the same time. Assuming their performances are independent, find the probability that
  • at least one of the three is asked to leave,
  • they pass a total of 7 games between them.
  • OCR MEI S1 Q4
    4 Answer part (i) of this question on the insert provided. A taxi driver operates from a taxi rank at a main railway station in London. During one particular week he makes 120 journeys, the lengths of which are summarised in the table.
    Length
    \(( x\) miles \()\)
    \(0 < x \leqslant 1\)\(1 < x \leqslant 2\)\(2 < x \leqslant 3\)\(3 < x \leqslant 4\)\(4 < x \leqslant 6\)\(6 < x \leqslant 10\)
    Number of
    journeys
    3830211498
    1. On the insert, draw a cumulative frequency diagram to illustrate the data.
    2. Use your graph to estimate the median length of journey and the quartiles. Hence find the interquartile range.
    3. State the type of skewness of the distribution of the data.
    OCR MEI AS Paper 1 2018 June Q8
    8 In this question you must show detailed reasoning. Fig. 8 shows the graph of a quadratic function. The graph crosses the axes at the points \(( - 1,0 ) , ( 0 , - 4 )\) and \(( 2,0 )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1513048a-d53b-4b85-82f4-c86e0d81f8f8-4_689_606_1114_731} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure} Find the area of the finite region bounded by the curve and the \(x\)-axis.
    OCR MEI AS Paper 1 2019 June Q1
    1 In this question you must show detailed reasoning. Show that the equation \(x = 7 + 2 x ^ { 2 }\) has no real roots.
    OCR MEI AS Paper 1 2019 June Q2
    2 In this question you must show detailed reasoning. Fig. 2 shows the graphs of \(y = 4 \sin x ^ { \circ }\) and \(y = 3 \cos x ^ { \circ }\) for \(0 \leqslant x \leqslant 360\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0b1c272a-f0f4-4931-be89-5d045804a7af-3_549_768_813_258} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} Find the \(x\)-coordinates of the two points of intersection, giving your answers correct to 1 decimal place.
    OCR MEI AS Paper 1 2019 June Q9
    9 In this question you must show detailed reasoning. A car accelerates from rest along a straight level road. The velocity of the car after 8 s is \(25.6 \mathrm {~ms} ^ { - 1 }\).
    In one model for the motion, the velocity \(v \mathrm {~ms} ^ { - 1 }\) at time \(t\) seconds is given by \(v = 1.2 t ^ { 2 } - k t ^ { 3 }\), where \(k\) is a constant and \(0 \leqslant t \leqslant 8\).
    1. The model gives the correct velocity of \(25.6 \mathrm {~ms} ^ { - 1 }\) at time 8 s . Show that \(k = 0.1\). A second model for the motion uses constant acceleration.
    2. Find the value of the acceleration which gives the correct velocity of \(25.6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time 8 s .
    3. Show that these two models give the same value for the displacement in the first 8 s .
    OCR MEI AS Paper 1 2020 November Q12
    12 In this question you must show detailed reasoning. Fig. 12 shows part of the graph of \(y = x ^ { 2 } + \frac { 1 } { x ^ { 2 } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-7_574_574_402_233} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} The tangent to the curve \(\mathrm { y } = \mathrm { x } ^ { 2 } + \frac { 1 } { \mathrm { x } ^ { 2 } }\) at the point \(\left( 2 , \frac { 17 } { 4 } \right)\) meets the \(x\)-axis at A and meets the \(y\)-axis at B . O is the origin.
    1. Find the exact area of the triangle OAB .
    2. Use calculus to prove that the complete curve has two minimum points and no maximum point. \section*{END OF QUESTION PAPER}
    OCR MEI AS Paper 1 2021 November Q8
    8 In this question you must show detailed reasoning.
    1. Use differentiation to find the coordinates of the stationary point on the curve with equation \(y = 2 x ^ { 2 } - 3 x - 2\).
    2. Use the second derivative to determine the nature of the stationary point.
    3. Show by shading on a sketch the region defined by the inequality \(y \geqslant 2 x ^ { 2 } - 3 x - 2\), indicating clearly whether the boundary is included or not.
    4. Solve the inequality \(2 x ^ { 2 } - 3 x - 2 > 0\) using set notation for your answer.
    OCR MEI AS Paper 2 2018 June Q8
    8 In this question you must show detailed reasoning. The centre of a circle C is at the point \(( - 1,3 )\) and C passes through the point \(( 1 , - 1 )\). The straight line L passes through the points \(( 1,9 )\) and \(( 4,3 )\). Show that L is a tangent to C .
    OCR MEI AS Paper 2 2019 June Q10
    10 In this question you must show detailed reasoning. The equation of a curve is \(y = \frac { x ^ { 2 } } { 4 } + \frac { 2 } { x } + 1\). A tangent and a normal to the curve are drawn at the point where \(x = 2\). Calculate the area bounded by the tangent, the normal and the \(x\)-axis. \section*{END OF QUESTION PAPER}
    OCR MEI AS Paper 2 2023 June Q14
    14 In this question you must show detailed reasoning. The equation of a curve is \(y = 16 \sqrt { x } + \frac { 8 } { x }\).
    Determine the equation of the tangent to the curve at the point where \(x = 4\).
    OCR MEI AS Paper 2 2024 June Q8
    8 In this question you must show detailed reasoning. Determine the coordinates of the point of intersection of the line with equation \(y = 2 x + 3\) and the curve with equation \(y ^ { 2 } - 4 x ^ { 2 } = 33\).
    OCR MEI AS Paper 2 2020 November Q7
    7 In this question you must show detailed reasoning. A circle has centre \(( 2 , - 1 )\) and radius 5. A straight line passes through the points \(( 1,1 )\) and \(( 9,5 )\).
    Find the coordinates of the points of intersection of the line and the circle.
    OCR MEI AS Paper 2 2021 November Q3
    3 In this question you must show detailed reasoning. You are given that \(\tan 30 ^ { \circ } = \frac { 1 } { \sqrt { 3 } }\).
    Explain why \(\tan 690 ^ { \circ } = - \frac { 1 } { \sqrt { 3 } }\).
    OCR MEI AS Paper 2 Specimen Q11
    11 In this question you must show detailed reasoning. Fig. 11 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a cubic function. Fig. 11 also shows the coordinates of the turning points and the points of intersection with the axes. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{05376a51-e768-4b45-9c18-c98255a4bd70-11_805_620_543_317} \captionsetup{labelformat=empty} \caption{Fig. 11}
    \end{figure} Show that the tangent to \(y = \mathrm { f } ( x )\) at \(x = t\) is parallel to the tangent to \(y = \mathrm { f } ( x )\) at \(x = - t\) for all values of \(t\).
    OCR MEI M1 2005 January Q6
    6 In this question take \(g\) as \(10 \mathrm {~m \mathrm {~s} ^ { - 2 }\).} A small ball is released from rest. It falls for 2 seconds and is then brought to rest over the next 5 seconds. This motion is modelled in the speed-time graph Fig. 6. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c84a748a-a6f4-48c5-b864-fe543569bdf5-5_659_1105_578_493} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure} For this model,
    1. calculate the distance fallen from \(t = 0\) to \(t = 7\),
    2. find the acceleration of the ball from \(t = 2\) to \(t = 6\), specifying the direction,
    3. obtain an expression in terms of \(t\) for the downward speed of the ball from \(t = 2\) to \(t = 6\),
    4. state the assumption that has been made about the resistance to motion from \(t = 0\) to \(t = 2\). The part of the motion from \(t = 2\) to \(t = 7\) is now modelled by \(v = - \frac { 3 } { 2 } t ^ { 2 } + \frac { 19 } { 2 } t + 7\).
    5. Verify that \(v\) agrees with the values given in Fig. 6 at \(t = 2 , t = 6\) and \(t = 7\).
    6. Calculate the distance fallen from \(t = 2\) to \(t = 7\) according to this model.
    OCR MEI M1 2007 January Q8
    8 In this question the value of \(\boldsymbol { g \) should be taken as \(\mathbf { 1 0 } \mathbf { m ~ s } ^ { \mathbf { - 2 } }\).} As shown in Fig. 8, particles A and B are projected towards one another. Each particle has an initial speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) vertically and \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) horizontally. Initially A and B are 70 m apart horizontally and B is 15 m higher than A . Both particles are projected over horizontal ground. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{52d6c914-b204-4587-a82e-fbab6693fcf8-6_476_1111_518_475} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
    1. Show that, \(t\) seconds after projection, the height in metres of each particle above its point of projection is \(10 t - 5 t ^ { 2 }\).
    2. Calculate the horizontal range of A . Deduce that A hits the horizontal ground between the initial positions of A and B .
    3. Calculate the horizontal distance travelled by B before reaching the ground.
    4. Show that the paths of the particles cross but that the particles do not collide if they are projected at the same time. In fact, particle A is projected 2 seconds after particle B .
    5. Verify that the particles collide 0.75 seconds after A is projected.
    OCR MEI Paper 1 2019 June Q1
    1 In this question you must show detailed reasoning. Show that \(\int _ { 4 } ^ { 9 } ( 2 x + \sqrt { x } ) \mathrm { d } x = \frac { 233 } { 3 }\).
    OCR MEI Paper 1 2023 June Q5
    5 In this question you must show detailed reasoning.
    1. Find the coordinates of the two stationary points on the graph of \(y = 15 - x ^ { 2 } - \frac { 16 } { x ^ { 2 } }\).
    2. Show that both these stationary points are maximum points.
    OCR MEI Paper 1 2020 November Q7
    7 In this question you must show detailed reasoning. The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = x ^ { 3 } + x ^ { 2 } - 8 x - 12\) for all values of \(x\).
    1. Use the factor theorem to show that \(( x + 2 )\) is a factor of \(\mathrm { f } ( x )\).
    2. Solve the equation \(\mathrm { f } ( x ) = 0\).
    OCR MEI Paper 1 2020 November Q10
    10 In this question you must show detailed reasoning. Fig. 10 shows the curve given parametrically by the equations \(\mathrm { x } = \frac { 1 } { \mathrm { t } ^ { 2 } } , \mathrm { y } = \frac { 1 } { \mathrm { t } ^ { 3 } } - \frac { 1 } { \mathrm { t } }\), for \(t > 0\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{7de77679-59c0-4431-a9cb-6ab11d2f9062-07_611_595_708_260} \captionsetup{labelformat=empty} \caption{Fig. 10}
    \end{figure}
    1. Show that \(\frac { d y } { d x } = \frac { 3 - t ^ { 2 } } { 2 t }\).
    2. Find the coordinates of the point on the curve at which the tangent to the curve is parallel to the line \(4 \mathrm { y } + \mathrm { x } = 1\).
    3. Find the cartesian equation of the curve. Give your answer in factorised form.
    OCR MEI M1 2016 June Q6
    6 In this question you should take \(\boldsymbol { g \) to be \(\mathbf { 1 0 } \mathrm { ms } ^ { \boldsymbol { - } \mathbf { 2 } }\).} Piran finds a disused mineshaft on his land and wants to know its depth, \(d\) metres.
    Local records state that the mineshaft is between 150 and 200 metres deep.
    He drops a small stone down the mineshaft and records the time, \(T\) seconds, until he hears it hit the bottom. It takes 8.0 seconds. Piran tries three models, \(\mathrm { A } , \mathrm { B }\) and C .
    In model A, Piran uses the formula \(d = 5 T ^ { 2 }\) to estimate the depth.
    1. Find the depth that model A gives and comment on whether it is consistent with the local records. Explain how the formula in model A is obtained. In model B, Piran uses the speed-time graph in Fig. 6. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{4c8c96cf-5184-46e4-9c45-a8a80d0a6ff8-5_762_1176_1087_424} \captionsetup{labelformat=empty} \caption{Fig. 6}
      \end{figure}
    2. Calculate the depth of the mineshaft according to model B. Comment on whether this depth is consistent with the local records.
    3. Describe briefly one respect in which model B is the same as model A and one respect in which it is different. Piran then tries model C in which the speed, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$\begin{aligned} & v = 10 t - t ^ { 2 } \text { for } 0 \leqslant t \leqslant 5
      & v = 25 \text { for } 5 < t \leqslant 8 \end{aligned}$$
    4. Calculate the depth of the mineshaft according to model C. Comment on whether this depth is consistent with the local records.
    5. Describe briefly one respect in which model C is similar to model B and one respect in which it is different.
    OCR MEI Paper 1 Specimen Q13
    13 In this question you must show detailed reasoning. Determine the values of \(k\) for which part of the graph of \(y = x ^ { 2 } - k x + 2 k\) appears below the \(x\)-axis.