OCR MEI AS Paper 1 2020 November — Question 12

Exam BoardOCR MEI
ModuleAS Paper 1 (AS Paper 1)
Year2020
SessionNovember
TopicDifferentiation Applications
TypeFind tangent line equation

12 In this question you must show detailed reasoning. Fig. 12 shows part of the graph of \(y = x ^ { 2 } + \frac { 1 } { x ^ { 2 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-7_574_574_402_233} \captionsetup{labelformat=empty} \caption{Fig. 12}
\end{figure} The tangent to the curve \(\mathrm { y } = \mathrm { x } ^ { 2 } + \frac { 1 } { \mathrm { x } ^ { 2 } }\) at the point \(\left( 2 , \frac { 17 } { 4 } \right)\) meets the \(x\)-axis at A and meets the \(y\)-axis at B . O is the origin.
  1. Find the exact area of the triangle OAB .
  2. Use calculus to prove that the complete curve has two minimum points and no maximum point. \section*{END OF QUESTION PAPER}