Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI M1 Q2
8 marks Standard +0.3
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-1_98_836_1073_718} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} A toy car is moving along the straight line \(\mathrm { O } x\), where O is the origin. The time \(t\) is in seconds. At time \(t = 0\) the car is at \(\mathrm { A } , 3 \mathrm {~m}\) from O as shown in Fig. 5. The velocity of the car, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$v = 2 + 12 t - 3 t ^ { 2 }$$ Calculate the distance of the car from O when its acceleration is zero.
OCR MEI M1 Q3
5 marks Moderate -0.5
3 A particle moves along a straight line containing a point O . Its displacement, \(x \mathrm {~m}\), from O at time \(t\) seconds is given by $$x = 12 t - t ^ { 3 } , \text { where } - 10 \leqslant t \leqslant 10$$ Find the values of \(x\) for which the velocity of the particle is zero.
OCR MEI M1 Q4
16 marks Moderate -0.3
4 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time \(t\) seconds is \(y\) metres. The displacement-time graph for the motion during the time interval \(0 \leqslant t \leqslant 4\) is shown in Fig. 7 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-3_1027_1333_372_435} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Using the graph, determine for the time interval \(0 \leqslant t \leqslant 4\)
    (A) the greatest displacement of P above its position when \(t = 0\),
    (B) the greatest distance of P from its position when \(t = 0\),
    (C) the time interval in which P is moving downwards,
    (D) the times when P is instantaneously at rest. The displacement of P in the time interval \(0 \leqslant t \leqslant 3\) is given by \(y = - 4 t ^ { 2 } + 8 t + 12\).
  2. Use calculus to find expressions in terms of \(t\) for the velocity and for the acceleration of P in the interval \(0 \leqslant t \leqslant 3\).
  3. At what times does P have a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the interval \(0 \leqslant t \leqslant 3\) ? In the time interval \(3 \leqslant t \leqslant 4 , \mathrm { P }\) has a constant acceleration of \(32 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). There is no sudden change in velocity when \(t = 3\).
  4. Find an expression in terms of \(t\) for the displacement of P in the interval \(3 \leqslant t \leqslant 4\).
OCR MEI M1 Q5
8 marks Moderate -0.8
5 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-4_581_1085_453_567} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. How can you tell from the sketch that the acceleration is not modelled as being constant for \(0 \leqslant t \leqslant 4\) ? The velocity of the sprinter, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), for the time interval \(0 \leqslant t \leqslant 4\) is modelled by the expression $$v = 3 t - \frac { 3 } { 8 } t ^ { 2 } .$$
  2. Find the acceleration that the model predicts for \(t = 4\) and comment on what this suggests about the running of the sprinter.
  3. Calculate the distance run by the sprinter from \(t = 1\) to \(t = 4\).
OCR MEI M1 Q6
17 marks Moderate -0.3
6 Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, \(v \mathrm {~m} \mathrm {~s} { } ^ { 1 }\), at time \(t\) seconds for the time interval \(- 3 \leqslant t \leqslant 5\) is given by $$v = t ^ { 2 } - 2 t - 8 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-5_624_886_549_631} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the velocity of the insect when \(t = 0\).
  2. Show that the insect is instantaneously at rest when \(t = - 2\) and when \(t = 4\).
  3. Determine the velocity of the insect when its acceleration is zero. Write down the coordinates of the point A shown in Fig. 7.
  4. Calculate the distance travelled by the insect from \(t = 1\) to \(t = 4\).
  5. Write down the distance travelled by the insect in the time interval \(- 2 \leqslant t \leqslant 4\).
  6. How far does the insect walk in the time interval \(1 \leqslant t \leqslant 5\) ?
OCR MEI M1 Q1
8 marks Moderate -0.8
1 Fig. 4 illustrates a straight horizontal road. \(A\) and \(B\) are points on the road which are 215 metres apart and \(M\) is the mid-point of AB . When a car passes A its speed is \(12 \mathrm {~ms} ^ { - 1 }\) in the direction AB . It then accelerates uniformly and when it reaches \(B\) its speed is \(31 \mathrm {~ms} ^ { - 1 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b9e41fac-9f4b-4165-af03-67ebdcb326de-1_140_1160_455_488} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the car's acceleration.
  2. Find how long it takes the car to travel from A to B .
  3. Find how long it takes the car to travel from A to M .
  4. Explain briefly, in terms of the speed of the car, why the time taken to travel from A to M is more than half the time taken to travel from A to B .
OCR MEI M1 Q2
8 marks Moderate -0.8
2 In this question, air resistance should be neglected.
Fig. 2 illustrates the flight of a golf ball. The golf ball is initially on the ground, which is horizontal. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b9e41fac-9f4b-4165-af03-67ebdcb326de-1_285_1117_1450_497} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} It is hit and given an initial velocity with components of \(15 \mathrm {~ms} ^ { - 1 }\) in the horizontal direction and \(20 \mathrm {~ms} ^ { - 1 }\) in the vertical direction.
  1. Find its initial speed.
  2. Find the ball's flight time and range, \(R \mathrm {~m}\).
  3. (A) Show that the range is the same if the components of the initial velocity of the ball are \(20 \mathrm {~ms} ^ { - 1 }\) in the horizontal direction and \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the vertical direction.
    (B) State, justifying your answer, whether the range is the same whenever the ball is hit with the same initial speed.
OCR MEI M1 Q3
7 marks Moderate -0.3
3 A particle is moving along a straight line and its position is relative to an origin on the line. At time \(t \mathrm {~s}\), the particle's acceleration, \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\), is given by $$a = 6 t - 12 .$$ At \(t = 0\) the velocity of the particle is \(+ 9 \mathrm {~ms} ^ { - 1 }\) and its position is - 2 m .
  1. Find an expression for the velocity of the particle at time \(t \mathrm {~s}\) and verify that it is stationary when \(t = 3\).
  2. Find the position of the particle when \(t = 2\).
OCR MEI M1 Q4
5 marks Moderate -0.3
4 Fig. 4 illustrates points \(\mathrm { A } , \mathrm { B }\) and C on a straight race track. The distance AB is 300 m and AC is 500 m .
A car is travelling along the track with uniform acceleration. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b9e41fac-9f4b-4165-af03-67ebdcb326de-2_90_1335_982_331} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Initially the car is at A and travelling in the direction AB with speed \(5 \mathrm {~ms} ^ { - 1 }\). After 20s it is at C .
  1. Find the acceleration of the car.
  2. Find the speed of the car at B and how long it takes to travel from A to B .
OCR MEI M1 Q5
7 marks Moderate -0.3
5 A particle is moving along a straight line and its position is relative to an origin on the line. At time \(t \mathrm {~s}\), the particle's acceleration, \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\), is given by $$a = 6 t - 12 .$$ At \(t = 0\) the velocity of the particle is \(+ 9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its position is - 2 m .
  1. Find an expression for the velocity of the particle at time \(t \mathrm {~s}\) and verify that it is stationary when \(t = 3\).
  2. Find the position of the particle when \(t = 2\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{b9e41fac-9f4b-4165-af03-67ebdcb326de-3_349_987_375_623} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure} Particles P and Q move in the same straight line. Particle P starts from rest and has a constant acceleration towards \(Q\) of \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Particle \(Q\) starts 125 m from \(P\) at the same time and has a constant speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) away from \(P\). The initial values are shown in Fig. 4.
  3. Write down expressions for the distances travelled by P and by Q at time \(t\) seconds after the start of the motion.
  4. How much time does it take for P to catch up with Q and how far does P travel in this time?
OCR MEI M1 Q1
17 marks Moderate -0.3
1 A car of mass 1000 kg is travelling along a straight, level road. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-1_150_868_316_602} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
\end{figure}
  1. Calculate the acceleration of the car when a resultant force of 2000 N acts on it in the direction of its motion. How long does it take the car to increase its speed from \(5 \mathrm {~ms} ^ { - 1 }\) to \(12.5 \mathrm {~ms} ^ { - 1 }\) ? The car has an acceleration of \(1.4 \mathrm {~ms} ^ { - 2 }\) when there is a driving force of 2000 N .
  2. Show that the resistance to motion of the car is 600 N . A trailer is now atached to the car, as shown in Fig. 6.2. The car still has a driving force of 2000 N and resistance to motion of 600 N . The trailer has a mass of 800 kg . The tow-bar connecting the car and the trailer is light and horizontal. The car and trailer are accelerating at \(0.7 \mathrm {~ms} ^ { 2 }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-1_165_883_1279_554} \captionsetup{labelformat=empty} \caption{Fig. 6.2}
    \end{figure}
  3. Show that the resistance to the motion of the trailer is 140 N .
  4. Calculate the force in the tow bar. The driving force is now removed and a braking force of 610 N is applied to the car. All the resistances to motion remain as before. The trailer has no brakes.
  5. Calculate the new acceleration. Calculate also the force in the tow-bar, stating whether it is a tension or a thrust (compression).
OCR MEI M1 Q2
8 marks Moderate -0.3
2 Fig. 3 shows two people, Sam and Tom, pushing a car of mass 1000 kg along a straight line \(l\) on level ground. Sam pushes with a constant horizontal force of 300 N at an angle of \(30 ^ { \circ }\) to the line \(l\).
Tom pushes with a constant horizontal force of 175 N at an angle of \(15 ^ { \circ }\) to the line \(l\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-2_289_1132_571_507} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. The car starts at rest and moves with constant acceleration. After 6 seconds it has travelled 7.2 m . Find its acceleration.
  2. Find the resistance force acting on the car along the line \(l\).
  3. The resultant of the forces exerted by Sam and Tom is not in the direction of the car's acceleration. Explain briefly why.
OCR MEI M1 Q3
7 marks Standard +0.3
3 A particle is travelling along a straight line with constant acceleration. \(\mathrm { P } , \mathrm { O }\) and Q are points on the line, as illustrated in Fig. 4. The distance from P to O is 5 m and the distance from O to Q is 30 m . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-2_115_1169_1719_499} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Initially the particle is at O . After 10 s , it is at Q and its velocity is \(9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the direction \(\overrightarrow { \mathrm { OQ } }\).
  1. Find the initial velocity and the acceleration of the particle.
  2. Prove that the particle is never at P .
OCR MEI M1 Q4
7 marks Standard +0.3
4 A car is driven with constant acceleration, \(a \mathrm {~m} \mathrm {~s} { } ^ { 2 }\), along a straight road. Its speed when it passes a road sign is \(u \mathrm {~ms} { } ^ { 1 }\). The car travels 14 m in the 2 seconds after passing the sign; 5 seconds after passing the sign it has a speed of \(19 \mathrm {~ms} { } ^ { 1 }\).
  1. Write down two equations connecting \(a\) and \(u\). Hence find the values of \(a\) and \(u\).
  2. What distance does the car travel in the 5 seconds after passing the road sign?
OCR MEI M1 Q1
6 marks Moderate -0.3
1 In this question take \(\boldsymbol { g } = \mathbf { 1 0 }\).
The directions of the unit vectors \(\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right)\) are east, north and vertically upwards.
Forces \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) are given by \(\mathbf { p } = \left( \begin{array} { r } - 1 \\ - 1 \\ 5 \end{array} \right) \mathrm { N } , \mathbf { q } = \left( \begin{array} { r } - 1 \\ - 4 \\ 2 \end{array} \right) \mathrm { N }\) and \(\mathbf { r } = \left( \begin{array} { l } 2 \\ 5 \\ 0 \end{array} \right) \mathrm { N }\).
  1. Find which of \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) has the greatest magnitude.
  2. A particle has mass 0.4 kg . The forces acting on it are \(\mathbf { p } , \mathbf { q } , \mathbf { r }\) and its weight. Find the magnitude of the particle's acceleration and describe the direction of this acceleration.
OCR MEI M1 Q2
6 marks Standard +0.3
2 The directions of the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are east and north.
The velocity of a particle, \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\), at time \(t \mathrm {~s}\) is given by $$\mathbf { v } = \left( 16 - t ^ { 2 } \right) \mathbf { i } + ( 31 - 8 t ) \mathbf { j }$$ Find the time at which the particle is travelling on a bearing of \(045 ^ { \circ }\) and the speed of the particle at this time.
[0pt] [6]
OCR MEI M1 Q3
7 marks Standard +0.3
3 A football is kicked with speed \(31 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(20 ^ { \circ }\) to the horizontal. It travels towards the goal which is 50 m away. The height of the crossbar of the goal is 2.44 m .
  1. Does the ball go over the top of the crossbar? Justify your answer.
  2. State one assumption that you made in answering part (i).
OCR MEI M1 Q4
8 marks Moderate -0.3
4 The three forces \(\left. \begin{array} { r } - 1 \\ 14 \\ - 8 \end{array} \right) \mathrm { N } , \left( \begin{array} { r } 3 \\ - 9 \\ 10 \end{array} \right) \mathrm { N }\) and \(\mathbf { F } \mathrm { N }\) act on a body of mass 4 kg in deep space and give it an acceleration of \(\left. \quad \begin{array} { r } - 1 \\ 2 \\ 4 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\). At one instant the velocity of the body is \(\left. \begin{array} { r } - 3 \\ 3 \\ 6 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Calculate the velocity and also the speed of the body 3 seconds later.
OCR MEI M1 Q5
8 marks Moderate -0.3
5 The position vector of a toy boat of mass 1.5 kg is modelled as \(\mathbf { r } = ( 2 + t ) \mathbf { i } + \left( 3 t - t ^ { 2 } \right) \mathbf { j }\) where lengths are in metres, \(t\) is the time in seconds, \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal, perpendicular unit vectors and the origin is O .
  1. Find the velocity of the boat when \(t = 4\).
  2. Find the acceleration of the boat and the horizontal force acting on the boat.
  3. Find the cartesian equation of the path of the boat referred to \(x\) - and \(y\)-axes in the directions of \(\mathbf { i }\) and \(\mathbf { j }\), respectively, with origin O . You are not required to simplify your answer.
OCR MEI M1 Q6
5 marks Moderate -0.8
6 An object of mass 5 kg has a constant acceleration of \(\binom { - 1 } { 2 } \mathrm {~ms} ^ { - 2 }\) for \(0 \leqslant t \leqslant 4\), where \(t\) is the time in seconds.
  1. Calculate the force acting on the object. When \(t = 0\), the object has position vector \(\binom { - 2 } { 3 } \mathrm {~m}\) and velocity \(\binom { 4 } { 5 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the position vector of the object when \(t = 4\).
OCR MEI M1 Q7
5 marks Moderate -0.8
7 An object of mass 5 kg has a constant acceleration of \(\binom { - 1 } { 2 } \mathrm {~ms} ^ { - 2 }\) for \(0 \leqslant t \leqslant 4\), where \(t\) is the time in seconds.
  1. Calculate the force acting on the object. When \(t = 0\), the object has position vector \(\binom { - 2 } { 3 } \mathrm {~m}\) and velocity \(\binom { 4 } { 5 } \mathrm {~ms} ^ { - 1 }\).
  2. Find the position vector of the object when \(t = 4\).
OCR MEI M1 Q1
8 marks Standard +0.3
1 A rock of mass 8 kg is acted on by just the two forces \(- 80 \mathbf { k } \mathrm {~N}\) and \(( - \mathbf { i } + 16 \mathbf { j } + 72 \mathbf { k } ) \mathrm { N }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane and \(\mathbf { k }\) is a unit vector vertically upward.
  1. Show that the acceleration of the rock is \(\left( \frac { 1 } { 8 } \mathbf { i } + 2 \mathbf { j } \quad \mathbf { k } \right) \mathrm { ms } ^ { - 2 }\). The rock passes through the origin of position vectors, O , with velocity \(( \mathbf { i } - 4 \mathbf { j } + 3 \mathbf { k } ) \mathrm { m } \mathrm { s } { } ^ { 1 }\) and 4 seconds later passes through the point A .
  2. Find the position vector of A .
  3. Find the distance OA .
  4. Find the angle that OA makes with the horizontal.
OCR MEI M1 Q2
8 marks Moderate -0.3
2 Fig. 4 shows the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) in the directions of the cartesian axes \(\mathrm { O } x\) and \(\mathrm { O } y\), respectively. O is the origin of the axes and of position vectors. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{496a9dfb-d330-4777-b5f9-a9d1b653dd7f-1_374_372_1431_911} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The position vector of a particle is given by \(\mathbf { r } = 3 t \mathbf { i } + \left( 18 t ^ { 2 } - 1 \right) \mathbf { j }\) for \(t \geqslant 0\), where \(t\) is time.
  1. Show that the path of the particle cuts the \(x\)-axis just once.
  2. Find an expression for the velocity of the particle at time \(t\). Deduce that the particle never travels in the \(\mathbf { j }\) direction.
  3. Find the cartesian equation of the path of the particle, simplifying your answer.
OCR MEI M1 Q3
8 marks Moderate -0.8
3 In this question, the unit vectors ( ) and ( ) are in the directions east and north.
Distance is measured in metres and time, \(t\), in seconds.
A radio-controlled toy car moves on a flat horizontal surface. A child is standing at the origin and controlling the car.
When \(t = 0\), the displacement of the car from the origin is \(\binom { 0 } { - 2 } \mathrm {~m}\), and the car has velocity \(\binom { 2 } { 0 } \mathrm {~ms} ^ { - 1 }\). The acceleration of the car is constant and is \(\binom { - 1 } { 1 } \mathrm {~ms} ^ { - 2 }\).
  1. Find the velocity of the car at time \(t\) and its speed when \(t = 8\).
  2. Find the distance of the car from the child when \(t = 8\).
OCR MEI M1 Q5
7 marks Moderate -0.8
5 A particle of mass 5 kg has constant acceleration. Initially, the particle is at \(\binom { - 1 } { 2 } \mathrm {~m}\) with velocity \(\binom { 2 } { - 3 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\); after 4 seconds the particle has velocity \(\binom { 12 } { 9 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Calculate the acceleration of the particle.
  2. Calculate the position of the particle at the end of the 4 seconds.
  3. Calculate the force acting on the particle.