Questions — OCR MEI Paper 3 (118 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI Paper 3 2024 June Q6
6 In this question you must show detailed reasoning. Solve the equation \(\tan x - 3 \cot x = 2\) for values of \(x\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI Paper 3 2021 November Q11
11 In this question you must show detailed reasoning. The diagram shows triangle ABC , with \(\mathrm { BC } = 8 \mathrm {~cm}\) and angle \(\mathrm { BAC } = 45 ^ { \circ }\).
The point D on AC is such that \(\mathrm { DC } = 5 \mathrm {~cm}\) and \(\mathrm { BD } = 7 \mathrm {~cm}\).
\includegraphics[max width=\textwidth, alt={}, center]{a0d9573f-8273-4562-a2d3-07f15d9da1af-7_684_553_1119_258} Determine the exact length of AB .
OCR MEI Paper 3 Specimen Q5
5 In this question you must show detailed reasoning. Fig. 5 shows the circle with equation \(( x - 4 ) ^ { 2 } + ( y - 1 ) ^ { 2 } = 10\).
The points \(( 1,0 )\) and \(( 7,0 )\) lie on the circle. The point C is the centre of the circle. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b4e10fd2-4144-4019-bf00-070f93a2b05d-05_878_1000_685_255} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} Find the area of the part of the circle below the \(x\)-axis.
OCR MEI Paper 3 2019 June Q1
1 The function \(\mathrm { f } ( x )\) is defined for all real \(x\) by
\(f ( x ) = 3 x - 2\).
  1. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  2. Sketch the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) on the same diagram.
  3. Find the set of values of \(x\) for which \(\mathrm { f } ( x ) > \mathrm { f } ^ { - 1 } ( x )\).
OCR MEI Paper 3 2019 June Q2
2
  1. Find the transformation which maps the curve \(y = x ^ { 2 }\) to the curve \(y = x ^ { 2 } + 8 x - 7\).
  2. Write down the coordinates of the turning point of \(y = x ^ { 2 } + 8 x - 7\).
OCR MEI Paper 3 2019 June Q3
3
  1. Express \(\frac { 1 } { ( x + 2 ) ( x + 3 ) }\) in partial fractions.
  2. Find \(\int \frac { 1 } { ( x + 2 ) ( x + 3 ) } \mathrm { d } x\) in the form \(\ln ( \mathrm { f } ( x ) ) + c\), where \(c\) is the constant of integration and \(\mathrm { f } ( x )\) is a function to be determined.
OCR MEI Paper 3 2019 June Q4
4 In this question you must show detailed reasoning.
Show that \(\frac { 1 } { \sqrt { 10 } + \sqrt { 11 } } + \frac { 1 } { \sqrt { 11 } + \sqrt { 12 } } + \frac { 1 } { \sqrt { 12 } + \sqrt { 13 } } = \frac { 3 } { \sqrt { 10 } + \sqrt { 13 } }\).
OCR MEI Paper 3 2019 June Q5
5 A student's attempt to prove by contradiction that there is no largest prime number is shown below.
If there is a largest prime, list all the primes.
Multiply all the primes and add 1.
The new number is not divisible by any of the primes in the list and so it must be a new prime. The proof is incorrect and incomplete.
Write a correct version of the proof.
OCR MEI Paper 3 2019 June Q6
6 A circle has centre \(C ( 10,4 )\). The \(x\)-axis is a tangent to the circle, as shown in Fig. 6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{99485c27-9ff8-4bdb-a7e6-49dfcaedc579-5_605_828_979_255} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the equation of the circle.
  2. Show that the line \(y = x\) is not a tangent to the circle.
  3. Write down the position vector of the midpoint of OC.
OCR MEI Paper 3 2019 June Q7
7 In this question you must show detailed reasoning.
  1. Express \(\ln 3 \times \ln 9 \times \ln 27\) in terms of \(\ln 3\).
  2. Hence show that \(\ln 3 \times \ln 9 \times \ln 27 > 6\).
OCR MEI Paper 3 2019 June Q8
8 In this question you must show detailed reasoning. A is the point \(( 1,0 ) , B\) is the point \(( 1,1 )\) and \(D\) is the point where the tangent to the curve \(y = x ^ { 3 }\) at B crosses the \(x\)-axis, as shown in Fig. 8. The tangent meets the \(y\)-axis at E. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{99485c27-9ff8-4bdb-a7e6-49dfcaedc579-6_1154_832_450_242} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the area of triangle ODE.
  2. Find the area of the region bounded by the curve \(y = x ^ { 3 }\), the tangent at B and the \(y\)-axis.
OCR MEI Paper 3 2019 June Q9
9 In this question you must show detailed reasoning.
The curve \(x y + y ^ { 2 } = 8\) is shown in Fig. 9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{99485c27-9ff8-4bdb-a7e6-49dfcaedc579-7_734_750_397_244} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure} Find the coordinates of the points on the curve at which the normal has gradient 2.
OCR MEI Paper 3 2019 June Q10
10 Show that \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { 1 + \mathrm { e } ^ { x } }\) is an increasing function for all values of \(x\).
OCR MEI Paper 3 2019 June Q11
11 By using the substitution \(u = 1 + \sqrt { x }\), find \(\int \frac { x } { 1 + \sqrt { x } } \mathrm {~d} x\). Answer all the questions.
OCR MEI Paper 3 2019 June Q12
12 Show that the equation of the line in Fig. C2 is \(r y + h x = h r\), as given in line 24.
OCR MEI Paper 3 2019 June Q13
13
    1. Show that the cross-sectional area in Fig. C3.2 is \(\pi x ( 2 r - x )\).
    2. Hence show that the cross-sectional area is \(\frac { \pi r ^ { 2 } } { h ^ { 2 } } \left( h ^ { 2 } - y ^ { 2 } \right)\), as given in line 37 .
  1. Verify that the formula \(\frac { \pi r ^ { 2 } } { h ^ { 2 } } \left( h ^ { 2 } - y ^ { 2 } \right)\) for the cross-sectional area is also valid for
    1. Fig. C3.1,
    2. Fig. C3.3.
OCR MEI Paper 3 2019 June Q14
14
  1. Express \(\lim _ { \delta y \rightarrow 0 } \sum _ { 0 } ^ { h } \left( h ^ { 2 } - y ^ { 2 } \right) \delta y\) as an integral.
  2. Hence show that \(V = \frac { 2 } { 3 } \pi r ^ { 2 } h\), as given in line 41 .
OCR MEI Paper 3 2019 June Q15
15 A typical tube of toothpaste measures 5.4 cm across the straight edge at the top and is 12 cm high. It contains 75 ml of toothpaste so it needs to have an internal volume of \(75 \mathrm {~cm} ^ { 3 }\). Comment on the accuracy of the formula \(V = \frac { 2 } { 3 } \pi r ^ { 2 } h\), as given in line 41 , for the volume in this case. \section*{END OF QUESTION PAPER}