Questions — OCR MEI M1 (268 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI M1 Q4
4 A small box has weight \(\mathbf { W } \mathrm { N }\) and is held in equilibrium by two strings with tensions \(\mathbf { T } _ { 1 } \mathrm {~N}\) and \(\mathbf { T } _ { 2 } \mathrm {~N}\). This situation is shown in Fig. 2 which also shows the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) that are horizontal and vertically upwards, respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b80eced6-2fea-4b95-9104-d13339643df0-2_252_631_414_803} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The tension \(\mathbf { T } _ { 1 }\) is \(10 \mathbf { i } + 24 \mathbf { j }\).
  1. Calculate the magnitude of \(\mathbf { T } _ { 1 }\) and the angle between \(\mathbf { T } _ { 1 }\) and the vertical. The magnitude of the weight is \(w \mathrm {~N}\).
  2. Write down the vector \(\mathbf { W }\) in terms of \(w\) and \(\mathbf { j }\). The tension \(\mathbf { T } _ { 2 }\) is \(k \mathbf { i } + 10 \mathbf { j }\), where \(k\) is a scalar.
  3. Find the values of \(k\) and of \(w\).
OCR MEI M1 Q5
5 A particle has a position vector \(\mathbf { r }\), where \(\mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j }\) and \(\mathbf { i }\) and \(\mathbf { j }\) are unit vectors in the directions east and north respectively.
  1. Sketch \(\mathbf { r }\) on a diagram showing \(\mathbf { i }\) and \(\mathbf { j }\) and the origin O .
  2. Calculate the magnitude of \(\mathbf { r }\) and its direction as a bearing.
  3. Write down the vector that has the same direction as \(\mathbf { r }\) and three times its magnitude.
OCR MEI M1 Q6
6 Force \(\mathbf { F } _ { 1 }\) is \(\binom { 6 } { 13 } \mathrm {~N}\) and force \(\mathbf { F } _ { 2 }\) is \(\binom { 3 } { 5 }\), where \(\left. \int _ { 0 } \right] _ { \text {and } } \binom { 0 } { 1 }\) are vectors east and north respectively.
  1. Calculate the magnitude of \(\mathbf { F } _ { 1 }\), correct to three significant figures.
  2. Calculate the direction of the force \(\mathbf { F } _ { 1 } - \mathbf { F } _ { 2 }\) as a bearing. Force \(\mathbf { F } _ { 2 }\) is the resultant of all the forces acting on an object of mass 5 kg .
  3. Calculate the acceleration of the object and the change in its velocity after 10 seconds.
OCR MEI M1 Q1
1 A particle rests on a smooth, horizontal plane. Horizontal unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) lie in this plane. The particle is in equilibrium under the action of the three forces \(( - 3 \mathbf { i } + 4 \mathbf { j } ) \mathrm { N }\) and \(( 21 \mathbf { i } - 7 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { R N }\).
  1. Write down an expression for \(\mathbf { R }\) in terms of \(\mathbf { i }\) and \(\mathbf { j }\).
  2. Find the magnitude of \(\mathbf { R }\) and the angle between \(\mathbf { R }\) and the \(\mathbf { i }\) direction.
OCR MEI M1 Q2
2 The position vector of a particle at time \(t\) is given by $$\mathbf { r } = \frac { 1 } { 2 } t \mathbf { i } + \left( t ^ { 2 } - 1 \right) \mathbf { j } .$$ referred to an origin \(O\) where \(\mathbf { i }\) and \(\mathbf { j }\) are the standard unit vectors in the directions of the cartesian axes Ox and Oy respectively.
  1. Write down the value of \(t\) for which the \(x\)-coordinate of the position of the particle is 2 . Find the \(y\)-coordinate at this time.
  2. Show that the cartesian equation of the path of the particle is \(y = 4 x ^ { 2 } - 1\).
  3. Find the coordinates of the point where the particle is moving at \(45 ^ { \circ }\) to both Ox and Oy .
OCR MEI M1 Q3
3 The vectors \(\mathbf { p }\) and \(\mathbf { q }\) are given by $$\mathbf { p } = 8 \mathbf { i } + \mathbf { j } \text { and } \mathbf { q } = 4 \mathbf { i } - 7 \mathbf { j } .$$
  1. Show that \(\mathbf { p }\) and \(\mathbf { q }\) are equal in magnitude.
  2. Show that \(\mathbf { p } + \mathbf { q }\) is parallel to \(2 \mathbf { i } - \mathbf { j }\).
  3. Draw \(\mathbf { p } + \mathbf { q }\) and \(\mathbf { p } - \mathbf { q }\) on the grid. Write down the angle between these two vectors.
OCR MEI M1 Q4
4 In this question, \(\mathbf { i }\) is a horizontal unit vector and \(\mathbf { j }\) is a unit vector pointing vertically upwards.
A force \(\mathbf { F }\) is \(- \mathbf { i } + 5 \mathbf { j }\).
  1. Calculate the magnitude of \(\mathbf { F }\). Calculate also the angle between \(\mathbf { F }\) and the upward vertical. Force \(\mathbf { G }\) is \(2 a \mathbf { i } + a \mathbf { j }\) and force \(\mathbf { H }\) is \(- 2 \mathbf { i } + 3 b \mathbf { j }\), where \(a\) and \(b\) are constants. The force \(\mathbf { H }\) is the resultant of forces \(4 \mathbf { F }\) and \(\mathbf { G }\).
  2. Find \(\mathbf { G }\) and \(\mathbf { H }\).
OCR MEI M1 Q5
5 The resultant of the force \(\binom { - 4 } { 8 } \mathrm {~N}\) and the force \(\mathbf { F }\) gives an object of mass 6 kg an acceleration of \(\binom { 2 } { 3 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\).
  2. Calculate the angle between \(\mathbf { F }\) and the vector \(\binom { 0 } { 1 }\).
OCR MEI M1 Q6
6 The force acting on a particle of mass 1.5 kg is given by the vector \(\binom { 6 } { 9 } \mathrm {~N}\).
  1. Give the acceleration of the particle as a vector.
  2. Calculate the angle that the acceleration makes with the direction \(\binom { 1 } { 0 }\).
  3. At a certain point of its motion, the particle has a velocity of \(\binom { - 2 } { 3 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Calculate the displacement of the particle over the next two seconds.
OCR MEI M1 Q7
7 A force \(\mathbf { F }\) is given by \(\mathbf { F } = ( 3.5 \mathbf { i } + 12 \mathbf { j } ) \mathrm { N }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors east and north respectively.
  1. Calculate the magnitude of \(\mathbf { F }\) and also its direction as a bearing.
  2. \(\mathbf { G }\) is the force \(( 7 \mathbf { i } + 24 \mathbf { j } ) \mathrm { N }\). Show that \(\mathbf { G }\) and \(\mathbf { F }\) are in the same direction and compare their magnitudes.
  3. Force \(\mathbf { F } _ { 1 }\) is \(( 9 \mathbf { i } - 18 \mathbf { j } ) \mathrm { N }\) and force \(\mathbf { F } _ { 2 }\) is \(( 12 \mathbf { i } + q \mathbf { j } ) \mathrm { N }\). Find \(q\) so that the sum \(\mathbf { F } _ { 1 } + \mathbf { F } _ { 2 }\) is in the direction of \(\mathbf { F }\).
OCR MEI M1 2008 June Q7
  1. What information in the question indicates that the tension in the string section CB is also 60 N ?
  2. Show that the string sections AC and CB are equally inclined to the horizontal (so that \(\alpha = \beta\) in Fig. 7.1).
  3. Calculate the angle of the string sections AC and CB to the horizontal. In a different situation the same box is supported by two separate light strings, PC and QC, that are tied to the box at C . There is also a horizontal force of 10 N acting at C . This force and the angles between these strings and the horizontal are shown in Fig. 7.2. The box is in equilibrium. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{170edb27-324e-44df-8dc1-7d8fbad680fe-4_323_503_1649_822} \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{figure}
  4. Calculate the tensions in the two strings.
OCR MEI M1 2013 June Q7
  1. Represent the forces acting on the object as a fully labelled triangle of forces.
  2. Find \(F\) and \(\theta\). Show that the distance between the object and the vertical section of rope A is 3 m . Abi then pulls harder and the object moves upwards. Bob adjusts the tension in rope B so that the object moves along a vertical line. Fig. 7.2 shows the situation when the object is part of the way up. The tension in rope A is \(S \mathrm {~N}\) and the tension in rope B is \(T \mathrm {~N}\). The ropes make angles \(\alpha\) and \(\beta\) with the vertical as shown in the diagram. Abi and Bob are taking a rest and holding the object stationary and in equilibrium. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{83e69140-4abf-4713-85da-922ce7530e47-5_383_360_534_854} \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{figure}
  3. Give the equations, involving \(S , T , \alpha\) and \(\beta\), for equilibrium in the vertical and horizontal directions.
  4. Find the values of \(S\) and \(T\) when \(\alpha = 8.5 ^ { \circ }\) and \(\beta = 35 ^ { \circ }\).
  5. Abi's mass is 40 kg . Explain why it is not possible for her to raise the object to a position in which \(\alpha = 60 ^ { \circ }\).
OCR MEI M1 Q2
  1. Obtain expressions, in terms of \(U\) and \(t\), for
    (A) \(x\),
    (B) \(y\).
  2. The ball takes \(T\) s to travel from O to P . Show that \(T = \frac { U \sin 68.5 ^ { \circ } } { 4.9 }\) and write down a second equation connecting \(U\) and \(T\).
  3. Hence show that \(U = 12.0\) (correct to three significant figures).
  4. Calculate the horizontal distance of the ball from the platform when the ball lands on the ground.
  5. Use the expressions you found in part (i) to show that the cartesian equation of the trajectory of the ball in terms of \(U\) is $$y = x \tan 68.5 ^ { \circ } - \frac { 4.9 x ^ { 2 } } { U ^ { 2 } \left( \cos 68.5 ^ { \circ } \right) ^ { 2 } }$$ Use this equation to show again that \(U = 12.0\) (correct to three significant figures). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{7bcde451-5c86-4ed6-b6f5-62c1ad77618c-3_391_1480_248_364} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure} Fig. 7 shows the graph of \(y = \frac { 1 } { 100 } \left( 100 + 15 x - x ^ { 2 } \right)\).
    For \(0 \leqslant x \leqslant 20\), this graph shows the trajectory of a small stone projected from the point Q where \(y \mathrm {~m}\) is the height of the stone above horizontal ground and \(x \mathrm {~m}\) is the horizontal displacement of the stone from O . The stone hits the ground at the point R .
  6. Write down the height of Q above the ground.
  7. Find the horizontal distance from O of the highest point of the trajectory and show that this point is 1.5625 m above the ground.
  8. Show that the time taken for the stone to fall from its highest point to the ground is 0.565 seconds, correct to 3 significant figures.
  9. Show that the horizontal component of the velocity of the stone is \(22.1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), correct to 3 significant figures. Deduce the time of flight from Q to R .
  10. Calculate the speed at which the stone hits the ground.
OCR MEI M1 2005 January Q6
6 In this question take \(g\) as \(10 \mathrm {~m \mathrm {~s} ^ { - 2 }\).} A small ball is released from rest. It falls for 2 seconds and is then brought to rest over the next 5 seconds. This motion is modelled in the speed-time graph Fig. 6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c84a748a-a6f4-48c5-b864-fe543569bdf5-5_659_1105_578_493} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} For this model,
  1. calculate the distance fallen from \(t = 0\) to \(t = 7\),
  2. find the acceleration of the ball from \(t = 2\) to \(t = 6\), specifying the direction,
  3. obtain an expression in terms of \(t\) for the downward speed of the ball from \(t = 2\) to \(t = 6\),
  4. state the assumption that has been made about the resistance to motion from \(t = 0\) to \(t = 2\). The part of the motion from \(t = 2\) to \(t = 7\) is now modelled by \(v = - \frac { 3 } { 2 } t ^ { 2 } + \frac { 19 } { 2 } t + 7\).
  5. Verify that \(v\) agrees with the values given in Fig. 6 at \(t = 2 , t = 6\) and \(t = 7\).
  6. Calculate the distance fallen from \(t = 2\) to \(t = 7\) according to this model.
OCR MEI M1 2007 January Q8
8 In this question the value of \(\boldsymbol { g \) should be taken as \(\mathbf { 1 0 } \mathbf { m ~ s } ^ { \mathbf { - 2 } }\).} As shown in Fig. 8, particles A and B are projected towards one another. Each particle has an initial speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) vertically and \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) horizontally. Initially A and B are 70 m apart horizontally and B is 15 m higher than A . Both particles are projected over horizontal ground. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{52d6c914-b204-4587-a82e-fbab6693fcf8-6_476_1111_518_475} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that, \(t\) seconds after projection, the height in metres of each particle above its point of projection is \(10 t - 5 t ^ { 2 }\).
  2. Calculate the horizontal range of A . Deduce that A hits the horizontal ground between the initial positions of A and B .
  3. Calculate the horizontal distance travelled by B before reaching the ground.
  4. Show that the paths of the particles cross but that the particles do not collide if they are projected at the same time. In fact, particle A is projected 2 seconds after particle B .
  5. Verify that the particles collide 0.75 seconds after A is projected.
OCR MEI M1 2016 June Q6
6 In this question you should take \(\boldsymbol { g \) to be \(\mathbf { 1 0 } \mathrm { ms } ^ { \boldsymbol { - } \mathbf { 2 } }\).} Piran finds a disused mineshaft on his land and wants to know its depth, \(d\) metres.
Local records state that the mineshaft is between 150 and 200 metres deep.
He drops a small stone down the mineshaft and records the time, \(T\) seconds, until he hears it hit the bottom. It takes 8.0 seconds. Piran tries three models, \(\mathrm { A } , \mathrm { B }\) and C .
In model A, Piran uses the formula \(d = 5 T ^ { 2 }\) to estimate the depth.
  1. Find the depth that model A gives and comment on whether it is consistent with the local records. Explain how the formula in model A is obtained. In model B, Piran uses the speed-time graph in Fig. 6. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{4c8c96cf-5184-46e4-9c45-a8a80d0a6ff8-5_762_1176_1087_424} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Calculate the depth of the mineshaft according to model B. Comment on whether this depth is consistent with the local records.
  3. Describe briefly one respect in which model B is the same as model A and one respect in which it is different. Piran then tries model C in which the speed, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$\begin{aligned} & v = 10 t - t ^ { 2 } \text { for } 0 \leqslant t \leqslant 5
    & v = 25 \text { for } 5 < t \leqslant 8 \end{aligned}$$
  4. Calculate the depth of the mineshaft according to model C. Comment on whether this depth is consistent with the local records.
  5. Describe briefly one respect in which model C is similar to model B and one respect in which it is different.
OCR MEI M1 Q1
1 A train consists of a locomotive pulling 17 identical trucks. The mass of the locomotive is 120 tonnes and the mass of each truck is 40 tonnes. The locomotive gives a driving force of 121000 N . The resistance to motion on each truck is \(R \mathrm {~N}\) and the resistance on the locomotive is \(5 R \mathrm {~N}\).
Initially the train is travelling on a straight horizontal track and its acceleration is \(0.11 \mathrm {~ms} ^ { - 2 }\).
  1. Show that \(R = 1500\).
  2. Find the tensions in the couplings between
    (A) the last two trucks,
    (B) the locomotive and the first truck. The train now comes to a place where the track goes up a straight, uniform slope at an angle \(\alpha\) with the horizontal, where \(\sin \alpha = \frac { 1 } { 80 }\). The driving force and the resistance forces remain the same as before.
  3. Find the magnitude and direction of the acceleration of the train. The train then comes to a straight uniform downward slope at an angle \(\beta\) to the horizontal.
    The driver of the train reduces the driving force to zero and the resistance forces remain the same as before. The train then travels at a constant speed down the slope.
  4. Find the value of \(\beta\).
OCR MEI M1 Q2
2 In this question the value of \(g\) should be taken as \(10 \mathrm {~m \mathrm {~s} ^ { 2 }\).} As shown in Fig. 8, particles A and B are projected towards one another. Each particle has an initial speed of \(10 \mathrm {~m} \mathrm {~s} ^ { 1 }\) vertically and \(20 \mathrm {~m} \mathrm {~s} { } ^ { 1 }\) horizontally. Initially A and B are 70 m apart horizontally and B is 15 m higher than A . Both particles are projected over horizontal ground. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{362d5995-bd39-4b07-b6a4-63eb1dd3e69d-2_461_1114_464_505} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that, \(t\) seconds after projection, the height in metres of each particle above its point of projection is \(10 t - 5 t ^ { 2 }\).
  2. Calculate the horizontal range of A . Deduce that A hits the horizontal ground between the initial positions of A and B .
  3. Calculate the horizontal distance travelled by B before reaching the ground.
  4. Show that the paths of the particles cross but that the particles do not collide if they are projected at the same time. In fact, particle A is projected 2 seconds after particle B .
  5. Verify that the particles collide 0.75 seconds after A is projected.