Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q3
3 The driving force \(F\) newtons and velocity \(v \mathrm {~km} \mathrm {~s} ^ { - 1 }\) of a car at time \(t\) seconds are related by the equation \(F = \frac { 25 } { v }\).
  1. Find \(\frac { \mathrm { d } F } { \mathrm {~d} v }\).
  2. Find \(\frac { \mathrm { d } F } { \mathrm {~d} t }\) when \(v = 50\) and \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 1.5\).
OCR MEI C3 Q4
4 Water flows into a bowl at a constant rate of \(10 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) (see Fig. 4). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-2_414_379_485_838} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} When the depth of water in the bowl is \(h \mathrm {~cm}\), the volume of water is \(V \mathrm {~cm} ^ { 3 }\), where \(V = \pi h ^ { 2 }\). Find the rate at which the depth is increasing at the instant in time when the depth is 5 cm .
OCR MEI C3 Q5
5 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \cos ^ { 2 } x } , - \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\), together with its asymptotes \(x = \frac { 1 } { 2 } \pi\) and \(x = - \frac { 1 } { 2 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-3_921_1398_538_414} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Use the quotient rule to show that the derivative of \(\frac { \sin x } { \cos x }\) is \(\frac { 1 } { \cos ^ { 2 } x }\).
  2. Find the area bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 4 } \pi\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \mathrm { f } \left( x + \frac { 1 } { 4 } \pi \right)\).
  3. Verify that the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) cross at \(( 0,1 )\).
  4. State a sequence of two transformations such that the curve \(y = \mathrm { f } ( x )\) is mapped to the curve \(y = \mathrm { g } ( x )\). On the copy of Fig. 9, sketch the curve \(y = \mathrm { g } ( x )\), indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
  5. Use your result from part (ii) to write down the area bounded by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = - \frac { 1 } { 4 } \pi\).
OCR MEI C3 Q6
6 When the gas in a balloon is kept at a constant temperature, the pressure \(P\) in atmospheres and the volume \(V \mathrm {~m} ^ { 3 }\) are related by the equation $$P = \frac { k } { V } ,$$ where \(k\) is a constant. [This is known as Boyle's Law.]
When the volume is \(100 \mathrm {~m} ^ { 3 }\), the pressure is 5 atmospheres, and the volume is increasing at a rate of \(10 \mathrm {~m} ^ { 3 }\) per second.
  1. Show that \(k = 500\).
  2. Find \(\frac { \mathrm { d } P } { \mathrm {~d} V }\) in terms of \(V\).
  3. Find the rate at which the pressure is decreasing when \(V = 100\).
OCR MEI C3 Q7
7 Fig. 4 shows a cone. The angle between the axis and the slant edge is \(30 ^ { \circ }\). Water is poured into the cone at a constant rate of \(2 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the radius of the water surface is \(r \mathrm {~cm}\) and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-4_363_391_1447_887} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Write down the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
  2. Show that \(V = \frac { \sqrt { 3 } } { 3 } \pi r ^ { 3 }\), and find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\).
    [0pt] [You may assume that the volume of a cone of height \(h\) and radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  3. Use the results of parts (i) and (ii) to find the value of \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) when \(r = 2\).
OCR MEI C3 Q8
8 Fig. 4 is a diagram of a garden pond. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-5_295_742_410_693} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The volume \(V \mathrm {~m} ^ { 3 }\) of water in the pond when the depth is \(h\) metres is given by $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 3 - h ) .$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} h }\). Water is poured into the pond at the rate of \(0.02 \mathrm {~m} ^ { 3 }\) per minute.
  2. Find the value of \(\frac { \mathrm { d } h } { \mathrm {~d} t }\) when \(h = 0.4\).
OCR MEI C3 Q1
1
  1. Show algebraically that the function \(\mathrm { f } ( x ) = \frac { 2 x } { 1 - x ^ { 2 } }\) is odd. Fig. 7 shows the curve \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant 4\), together with the asymptote \(x = 1\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8350e810-3ceb-4876-a7a8-249e17616057-1_718_813_567_644} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure}
  2. Use the copy of Fig. 7 to complete the curve for \(- 4 \leqslant x \leqslant 4\).
OCR MEI C3 Q3
3 Each of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) below is obtained using a sequence of two transformations applied to the corresponding dashed graph. In each case, state suitable transformations, and hence find expressions for \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{8350e810-3ceb-4876-a7a8-249e17616057-2_433_716_569_710}

  2. \includegraphics[max width=\textwidth, alt={}, center]{8350e810-3ceb-4876-a7a8-249e17616057-2_396_612_1130_761}
OCR MEI C3 Q4
4 Fig. 4 shows the curve \(y = f ( x )\), where \(f ( x ) = \sqrt { 1 - 9 x ^ { 2 } } , - a \leqslant x \leqslant a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8350e810-3ceb-4876-a7a8-249e17616057-3_480_573_410_785} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the value of \(a\).
  2. Write down the range of \(\mathrm { f } ( x )\).
  3. Sketch the curve \(y = \mathrm { f } \left( \frac { 1 } { 3 } x \right) - 1\).
OCR MEI C3 Q5
5 You are given that \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are odd functions, defined for \(x \in \mathbb { R }\).
  1. Given that \(\mathrm { s } ( x ) = \mathrm { f } ( x ) + \mathrm { g } ( x )\), prove that \(\mathrm { s } ( x )\) is an odd function.
  2. Given that \(\mathrm { p } ( x ) = \mathrm { f } ( x ) \mathrm { g } ( x )\), determine whether \(\mathrm { p } ( x )\) is odd, even or neither.
OCR MEI C3 Q6
6
  1. State the algebraic condition for the function \(\mathrm { f } ( x )\) to be an even function.
    What geometrical property does the graph of an even function have?
  2. State whether the following functions are odd, even or neither.
    (A) \(\mathrm { f } ( x ) = x ^ { 2 } - 3\)
    (B) \(\mathrm { g } ( x ) = \sin x + \cos x\)
    (C) \(\mathrm { h } ( x ) = \frac { 1 } { x + x ^ { 3 } }\)
OCR MEI C3 Q7
7 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \mathrm { e } ^ { - \frac { 1 } { 5 } x } \sin x\), for all \(x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8350e810-3ceb-4876-a7a8-249e17616057-4_645_1100_461_516} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Sketch the graphs of
    (A) \(y = \mathrm { f } ( 2 x )\),
    (B) \(y = \mathrm { f } ( x + \pi )\).
  2. Show that the \(x\)-coordinate of the turning point P satisfies the equation \(\tan x = 5\). Hence find the coordinates of P .
  3. Show that \(\mathrm { f } ( x + \pi ) = \mathrm { e } ^ { - \frac { 1 } { 5 } \pi } \mathrm { f } ( x )\). Hence, using the substitution \(u = x - \pi\), show that $$\int _ { \pi } ^ { 2 \pi } \mathrm { f } ( x ) \mathrm { d } x = \mathrm { e } ^ { - \frac { 1 } { 5 } \pi } \int _ { 0 } ^ { \pi } \mathrm { f } ( u ) \mathrm { d } u .$$ Interpret this result graphically. [You should not attempt to integrate \(\mathrm { f } ( x )\).]
OCR MEI C3 Q2
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } - 1 , x \in \mathbb { R } .$$ The curve crosses the \(x\)-axis at O and P , and has a turning point at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27f6c723-b199-48f1-ab18-22cc0b4b017b-2_866_979_576_573} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the exact \(x\)-coordinate of P .
  2. Show that the \(x\)-coordinate of Q is \(\ln 2\) and find its \(y\)-coordinate.
  3. Find the exact area of the region enclosed by the curve and the \(x\)-axis. The domain of \(\mathrm { f } ( x )\) is now restricted to \(x \geqslant \ln 2\).
  4. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Write down its domain and range, and sketch its graph on the copy of Fig. 9.
OCR MEI C3 Q3
3 Fig. 7 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + 2 \arctan x , x \in \mathbb { R }\). The scales on the \(x\) - and \(y\)-axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27f6c723-b199-48f1-ab18-22cc0b4b017b-3_864_844_465_688} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the range of f , giving your answer in terms of \(\pi\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and add a sketch of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) to the copy of Fig. 7.
OCR MEI C3 Q4
4 Given that \(\mathrm { f } ( x ) = 2 \ln x\) and \(\mathrm { g } ( x ) = \mathrm { e } ^ { x }\), find the composite function \(\mathrm { gf } ( x )\), expressing your answer as simply as possible.
OCR MEI C3 Q5
5 Write down the conditions for \(\mathrm { f } ( x )\) to be an odd function and for \(\mathrm { g } ( x )\) to be an even function.
Hence prove that, if \(\mathrm { f } ( x )\) is odd and \(\mathrm { g } ( x )\) is even, then the composite function \(\mathrm { gf } ( x )\) is even.
OCR MEI C3 Q7
7 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
OCR MEI C3 Q8
8 Sketch the curve \(y = 2 \arccos x\) for \(- 1 \leqslant x \leqslant 1\).
OCR MEI C3 Q1
1 Given that \(\mathrm { f } ( x ) = \frac { x + 1 } { x - 1 }\), show that \(\mathrm { ff } ( x ) = x\).
Hence write down the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). What can you deduce about the symmetry of the curve \(y = \mathrm { f } ( x ) ?\)
OCR MEI C3 Q2
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for all real numbers \(x\) by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = x - 2 .$$
  1. Find the composite functions \(\mathrm { fg } ( x )\) and \(\mathrm { gf } ( x )\).
  2. Sketch the curves \(y = \mathrm { f } ( x ) , y = \mathrm { fg } ( x )\) and \(y = \mathrm { gf } ( x )\), indicating clearly which is which.
OCR MEI C3 Q3
3 Given that \(\mathrm { f } ( x ) = 1 - x\) and \(\mathrm { g } ( x ) = | x |\), write down the composite function \(\mathrm { gf } ( x )\). On separate diagrams, sketch the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { gf } ( x )\).
OCR MEI C3 Q4
4 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 + 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arcsin \left( \frac { x \mathrm { r } } { 2 } \right)\) and state the domain of this function. Fig. 6 shows a sketch of the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d4aa92fb-d21b-4387-b711-b0a6b0d57baa-2_499_562_779_785} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Write down the coordinates of the points \(\mathrm { A } , \mathrm { B }\) and C .
OCR MEI C3 Q5
5 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).
OCR MEI C3 Q6
6 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for the domain \(x > 0\) as follows: $$\mathrm { f } ( x ) = \ln x , \quad \mathrm {~g} ( x ) = x ^ { 3 } .$$ Express the composite function \(\mathrm { fg } ( x )\) in terms of \(\ln x\).
State the transformation which maps the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { fg } ( x )\).
OCR MEI C3 Q7
7 Fig. 9 shows the line \(y = x\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - 1 \right)\). The line and the curve intersect at the origin and at the point \(\mathrm { P } ( a , a )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d4aa92fb-d21b-4387-b711-b0a6b0d57baa-3_694_886_430_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { e } ^ { a } = 1 + 2 a\).
  2. Show that the area of the region enclosed by the curve, the \(x\)-axis and the line \(x = a\) is \(\frac { 1 } { 2 } a\). Hence find, in terms of \(a\), the area enclosed by the curve and the line \(y = x\).
  3. Show that the inverse function of \(\mathrm { f } ( x )\) is \(\mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = \ln ( 1 + 2 x )\). Add a sketch of \(y = \mathrm { g } ( x )\) to the copy of Fig. 9.
  4. Find the derivatives of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( a ) = \frac { 1 } { \mathrm { f } ^ { \prime } ( a ) }\). Give a geometrical interpretation of this result.