OCR MEI C3 — Question 2

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicDifferentiating Transcendental Functions

2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } - 1 , x \in \mathbb { R } .$$ The curve crosses the \(x\)-axis at O and P , and has a turning point at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{27f6c723-b199-48f1-ab18-22cc0b4b017b-2_866_979_576_573} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the exact \(x\)-coordinate of P .
  2. Show that the \(x\)-coordinate of Q is \(\ln 2\) and find its \(y\)-coordinate.
  3. Find the exact area of the region enclosed by the curve and the \(x\)-axis. The domain of \(\mathrm { f } ( x )\) is now restricted to \(x \geqslant \ln 2\).
  4. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Write down its domain and range, and sketch its graph on the copy of Fig. 9.