Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q1
1 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \text { for } x \geqslant 0 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-1_705_864_525_635} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the origin and at the point \(( \ln 2,1 )\). The function \(\mathrm { g } ( x )\) is defined by $$\sqrt { } \text { for } x \geqslant 0 \text {. }$$
  2. Show that \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are inverse functions. Hence sketch the graph of \(y = \mathrm { g } ( x )\). Write down the gradient of the curve \(y = \mathrm { g } ( x )\) at the point \(( 1 , \ln 2 )\).
  3. Show that \(\int \left( \mathrm { e } ^ { x } 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } \quad 2 \mathrm { e } ^ { x } + x + c\). Hence evaluate \(\int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } \quad 1 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using your answer to part (iii), calculate the area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 Q2
2 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-2_388_727_434_701} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
OCR MEI C3 Q3
3 The function \(f ( x ) = \ln \left( 1 + x ^ { 2 } \right)\) has domain \(- 3 \leqslant x \leqslant 3\).
Fig. 9 shows the graph of \(y = f ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-3_495_867_519_607} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure} (1) Show algebraically that the function is even. State how this property relates to the shape of the curve.
(ii) Find the gradient of the curve at the point \(\mathrm { P } ( 2 , \ln 5 )\).
(iii) Explain why the function does not have an inverse for the domain \(- 3 \leqslant x \leqslant 3\). The domain of \(f ( x )\) is now restricted to \(0 \leqslant x \leqslant 3\). The inverse of \(f ( x )\) is the function \(g ( x )\),
(iv) Sketch the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) on the same axes. State the domain of the function \(g ( x )\).
Show that \(\mathrm { g } ( x ) = \sqrt { \mathrm { e } ^ { x } - 1 }\).
(v) Differentiate \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( \ln 5 ) = 1 \frac { 1 } { 4 }\). Explain the commection between this result and your answer to part (ii).
OCR MEI C3 Q1
1 Fig. 7 shows the curve \(y = _ { x - 1 }\). It has a minimum at the point P . The line \(l\) is an asymptote to the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0636807-d5bf-43c2-a484-68245e639cee-1_732_1049_467_547} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the equation of the asymptote \(l\).
  2. Find the coordinates of P .
  3. Using the substitution \(u = x - 1\), show that the area of the region enclosed by the \(x\)-axis, the curve and the lines \(x = 2\) and \(x = 3\) is given by $$\int _ { 1 } ^ { 2 } \left( u + 2 + \frac { 4 } { u } \right) \mathrm { d } u$$ Evaluate this area exactly.
  4. Another curve is defined by the equation \(\mathrm { e } ^ { y } = \frac { x ^ { 2 } + 3 } { x - 1 }\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\) by differentiating implicitly. Hence find the gradient of this curve at the point where \(x = 2\).
OCR MEI C3 Q2
2 Fig. 7 shows the curve defined implicitly by the equation $$y ^ { 2 } + y = x ^ { 9 } + 2 x$$ together with the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0636807-d5bf-43c2-a484-68245e639cee-2_462_385_657_858} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Not to scale Find the coordinates of the points of intersection of the line and the curve.
Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at each of these two points.
OCR MEI C3 Q3
3 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { x } { \sqrt { 2 + x _ { 2 } } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0636807-d5bf-43c2-a484-68245e639cee-3_476_674_498_708} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show algebraically that \(\mathrm { f } ( x )\) is an odd function. Interpret this result geometrically.
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { \left( 2 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the exact gradient of the curve at the origin.
  3. Find the exact area of the region bounded by the curve, the \(x\)-axis and the line \(x = 1\).
  4. (A) Show that if \(y = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\), then \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\).
    (B) Differentiate \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\) implicitly to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y ^ { 3 } } { x ^ { 3 } }\). Explain why this expression cannot be used to find the gradient of the curve at the origin.
OCR MEI C3 Q1
1 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-1_752_864_443_617} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR MEI C3 Q2
2 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x - 2 } }\), together with the lines \(y = x\) and \(x = 11\). The curve meets these lines at P and Q respectively. R is the point \(( 11,11 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-2_606_729_485_699} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 3 .
  2. Show that, for the curve, \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 4 } { 2 ( x - 2 ) ^ { \frac { 3 } { 2 } } }\). Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about \(y = x\).
  3. Using the substitution \(u = x - 2\), show that \(\int _ { 3 } ^ { 11 } \frac { x } { \sqrt { x - 2 } } \mathrm {~d} x = 25 \frac { 1 } { 3 }\). Hence find the area of the region PQR bounded by the curve and the lines \(y = x\) and \(x = 11\).
OCR MEI C3 Q3
3 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), which has a \(y\)-intercept at \(\mathrm { P } ( 0,3 )\), a minimum point at \(\mathrm { Q } ( 1,2 )\), and an asymptote \(x = - 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0b4c4935-998c-404f-8fed-9b39b849168e-3_904_937_425_589} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of the images of the points P and Q when the curve \(y = \mathrm { f } ( x )\) is transformed to
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( x + 1 ) + 2\). You are now given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { x + 1 } , x \neq - 1\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence find the coordinates of the other turning point on the curve \(y = \mathrm { f } ( x )\).
  3. Show that \(\mathrm { f } ( x - 1 ) = x - 2 + \frac { 4 } { x }\).
  4. Find \(\int _ { a } ^ { b } \left( x - 2 + \frac { 4 } { x } \right) \mathrm { d } x\) in terms of \(a\) and \(b\). Hence, by choosing suitable values for \(a\) and \(b\), find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\).
OCR MEI C3 Q4
4
  1. Differentiate \(\frac { \ln x } { x ^ { 2 } }\), simplifying your answer.
  2. Using integration by parts, show that \(\int \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = - \frac { 1 } { x } ( 1 + \ln x ) + c\).
OCR MEI C3 Q1
1 Fig. 4 shows the curve \(y = \mathrm { f } ( x )\), where $$f ( x ) = a + \cos b x , 0 \leqslant x \leqslant 2 \pi ,$$ and \(a\) and \(b\) are positive constants. The curve has stationary points at \(( 0,3 )\) and \(( 2 \pi , 1 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-1_420_616_538_759} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find \(a\) and \(b\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and state its domain and range.
OCR MEI C3 Q2
2 Fig. 9 shows the line \(y = x\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } - 1 \right)\). The line and the curve intersect at the origin and at the point \(\mathrm { P } ( a , a )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-2_681_880_461_606} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { e } ^ { a } = 1 + 2 a\).
  2. Show that the area of the region enclosed by the curve, the \(x\)-axis and the line \(x = a\) is \(\frac { 1 } { 2 } a\). Hence find, in terms of \(a\), the area enclosed by the curve and the line \(y = x\).
  3. Show that the inverse function of \(\mathrm { f } ( x )\) is \(\mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = \ln ( 1 + 2 x )\). Add a sketch of \(y = \mathrm { g } ( x )\) to the copy of Fig. 9.
  4. Find the derivatives of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( a ) = \frac { 1 } { \mathrm { f } ^ { \prime } ( a ) }\). Give a geometrical interpretation of this result.
OCR MEI C3 Q3
3 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = 1 - 2 \sin x\) for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Fig. 3 shows the curve \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-3_743_818_414_644} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Write down the range of the function \(\mathrm { f } ( x )\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\).
  3. Find \(\mathrm { f } ^ { \prime } ( 0 )\). Hence write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
OCR MEI C3 Q4
4 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 2 \arcsin x , - 1 \nless \leqslant 1\).
Fig. 6 also shows the curve \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
P is the point on the curve \(y = \mathrm { f } ( x )\) with \(x\)-coordinate \(\frac { 1 } { 2 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-4_711_694_620_726} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the \(y\)-coordinate of P , giving your answer in terms of \(\pi\). The point Q is the reflection of P in \(y = x\).
  2. Find \(\mathrm { g } ( x )\) and its derivative \(\mathrm { g } ^ { \prime } ( x )\). Hence determine the exact gradient of the curve \(y = \mathrm { g } ( x )\) at the point Q . Write down the exact gradient of \(y = \mathrm { f } ( x )\) at the point P .
OCR MEI C3 Q5
5 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\). The endpoints of the curve are \(\mathrm { P } ( - \pi , 1 )\) and \(\mathrm { Q } ( \pi , 3 )\), and \(\mathrm { f } ( x ) = a + \sin b x\), where \(a\) and \(b\) are constants. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7825ba53-67eb-4050-a671-85e37a30150a-5_661_1259_461_478} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Using Fig. 9, show that \(a = 2\) and \(b = \frac { 1 } { 2 }\).
  2. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point ( 0,2 ). Show that there is no point on the curve at which the gradient is greater than this.
  3. Find \(\mathrm { f } ^ { - 1 } ( x )\), and state its domain and range. Write down the gradient of \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 2,0 )\).
  4. Find the area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \pi\).
OCR MEI C3 Q1
1 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 1 }\) for the domain \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b7588524-8a5e-42af-8b52-29cdddc09eeb-1_976_1208_450_514} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x } { \left( x ^ { 2 } + 1 \right) ^ { 2 } }\), and hence that \(\mathrm { f } ( x )\) is an increasing function for \(x > 0\).
  2. Find the range of \(\mathrm { f } ( x )\).
  3. Given that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { 6 - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 3 } }\), find the maximum value of \(\mathrm { f } ^ { \prime } ( x )\). The function \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
  4. Write down the domain and range of \(\mathrm { g } ( x )\). Add a sketch of the curve \(y = \mathrm { g } ( x )\) to a copy of Fig. 9 .
  5. Show that \(\mathrm { g } ( x ) = \sqrt { \frac { x + 1 } { 2 - x } }\).
OCR MEI C3 Q2
2 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\).
OCR MEI C3 Q3
3 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + \sin 2 x\) for \(- \frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 4 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b7588524-8a5e-42af-8b52-29cdddc09eeb-2_577_820_1114_675} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. State a sequence of two transformations that would map part of the curve \(y = \sin x\) onto the curve \(y = \mathrm { f } ( x )\).
  2. Find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = \frac { 1 } { 4 } \pi\).
  3. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 0,1 )\). Hence write down the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
  4. State the domain of \(\mathrm { f } ^ { - 1 } ( x )\). Add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
  5. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
OCR MEI C3 Q1
1 Fig. 1 shows part of the curve \(y = \mathrm { e } ^ { 2 x } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-1_669_1032_459_538} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Find the coordinates of the turning point P .
OCR MEI C3 Q2
2 Find the exact gradient of the curve \(y = \ln ( 1 - \cos 2 x )\) at the point with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\).
OCR MEI C3 Q3
3
  1. Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence show that the curve \(y = \mathrm { e } ^ { - x } \sin 2 x\) has a stationary point when \(x = \frac { 1 } { 2 } \arctan 2\).
OCR MEI C3 Q4
4 marks
4 Fig. 8 shows parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where \(\mathrm { f } ( x ) = \tan x\) and \(\mathrm { g } ( x ) = 1 + \mathrm { f } \left( x - \frac { 1 } { 4 } \pi \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01bdea17-c698-44ae-a45a-7da4de631de4-2_687_888_419_609} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Describe a sequence of two transformations which maps the curve \(y = \mathrm { f } ( x )\) to the curve \(y = \mathrm { g } ( x )\). [4] It can be shown that \(\mathrm { g } ( x ) = \frac { 2 \sin x } { \sin x + \cos x }\).
  2. Show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { 2 } { ( \sin x + \cos x ) ^ { 2 } }\). Hence verify that the gradient of \(y = \mathrm { g } ( x )\) at the point \(\left( \frac { 1 } { 4 } \pi , 1 \right)\) is the same as that of \(y = \mathrm { f } ( x )\) at the origin.
  3. By writing \(\tan x = \frac { \sin x } { \cos x }\) and using the substitution \(u = \cos x\), show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { f } ( x ) \mathrm { d } x = \int _ { \frac { 1 } { \sqrt { 2 } } } ^ { 1 } \frac { 1 } { u } \mathrm {~d} u\). Evaluate this integral exactly.
  4. Hence find the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the lines \(x = \frac { 1 } { 4 } \pi\) and \(x = \frac { 1 } { 2 } \pi\).
OCR MEI C3 Q5
5 Differentiate \(x ^ { 2 } \tan 2 x\).
OCR MEI C3 Q6
6 Given that \(y = \sqrt [ 3 ] { 1 + x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
OCR MEI C3 Q7
7 Given that \(y = x ^ { 2 } \sqrt { 1 + 4 x }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x ( 5 x + 1 ) } { \sqrt { 1 + 4 x } }\).