OCR MEI C3 — Question 1

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicDifferentiating Transcendental Functions

1 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \text { for } x \geqslant 0 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6555136d-0444-41f6-9063-21960352089d-1_705_864_525_635} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the origin and at the point \(( \ln 2,1 )\). The function \(\mathrm { g } ( x )\) is defined by $$\sqrt { } \text { for } x \geqslant 0 \text {. }$$
  2. Show that \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are inverse functions. Hence sketch the graph of \(y = \mathrm { g } ( x )\). Write down the gradient of the curve \(y = \mathrm { g } ( x )\) at the point \(( 1 , \ln 2 )\).
  3. Show that \(\int \left( \mathrm { e } ^ { x } 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } \quad 2 \mathrm { e } ^ { x } + x + c\). Hence evaluate \(\int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } \quad 1 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using your answer to part (iii), calculate the area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the line \(x = 1\).
This paper (3 questions)
View full paper