Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q2
2 Fig. 9 shows the curve with equation \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\). It has an asymptote \(x = a\) and turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-2_754_870_478_609} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 3 x ^ { 2 } } { 3 y ^ { 2 } ( 2 x - 1 ) ^ { 2 } }\). Hence find the coordinates of the turning point P , giving the \(y\)-coordinate to 3 significant figures.
  3. Show that the substitution \(u = 2 x - 1\) transforms \(\int \frac { x } { \sqrt [ 3 ] { 2 x - 1 } } \mathrm {~d} x\) to \(\frac { 1 } { 4 } \int \left( u ^ { \frac { 2 } { 3 } } + u ^ { - \frac { 1 } { 3 } } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve \(y ^ { 3 } = \frac { x ^ { 3 } } { 2 x - 1 }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4.5\).
OCR MEI C3 Q3
3 Fig. 9 shows the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\). The function \(y = \mathrm { f } ( x )\) is given by $$f ( x ) = \ln \left( \frac { 2 x } { 1 + x } \right) , x > 0$$ The curve \(y = \mathrm { f } ( x )\) crosses the \(x\)-axis at P , and the line \(x = 2\) at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-3_559_644_622_745} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 1 . Find the exact \(y\)-coordinate of Q .
  2. Find the gradient of the curve at P. [Hint: use \(\ln \frac { a } { b } = \ln a - \ln b\).] The function \(\mathrm { g } ( x )\) is given by $$\mathrm { g } ( x ) = \frac { \mathrm { e } ^ { x } } { 2 - \mathrm { e } ^ { x } } , \quad x < \ln 2 .$$ The curve \(y = \mathrm { g } ( x )\) crosses the \(y\)-axis at the point R .
  3. Show that \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\). Write down the gradient of \(y = \mathrm { g } ( x )\) at R .
  4. Show, using the substitution \(u = 2 - \mathrm { e } ^ { x }\) or otherwise, that \(\int _ { 0 } ^ { \ln \frac { 4 } { 3 } } \mathrm {~g} ( x ) \mathrm { d } x = \ln \frac { 3 } { 2 }\). Using this result, show that the exact area of the shaded region shown in Fig. 9 is \(\ln \frac { 32 } { 27 }\). [Hint: consider its reflection in \(y = x\).]
OCR MEI C3 Q1
1 Show that \(\int _ { 1 } ^ { 2 } \frac { 1 } { \sqrt { 3 x - 2 } } \mathrm {~d} x = \frac { 2 } { 3 }\).
OCR MEI C3 Q2
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), which has a \(y\)-intercept at \(\mathrm { P } ( 0,3 )\), a minimum point at \(\mathrm { Q } ( 1,2 )\), and an asymptote \(x = - 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-1_904_937_785_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of the images of the points P and Q when the curve \(y = \mathrm { f } ( x )\) is transformed to
    (A) \(y = 2 \mathrm { f } ( x )\),
    (B) \(y = \mathrm { f } ( x + 1 ) + 2\). You are now given that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { x + 1 } , x \neq - 1\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence find the coordinates of the other turning point on the curve \(y = \mathrm { f } ( x )\).
  3. Show that \(\mathrm { f } ( x - 1 ) = x - 2 + \frac { 4 } { x }\).
  4. Find \(\int _ { a } ^ { b } \left( x - 2 + \frac { 4 } { x } \right) \mathrm { d } x\) in terms of \(a\) and \(b\). Hence, by choosing suitable values for \(a\) and \(b\), find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\).
OCR MEI C3 Q3
3 marks
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
[0pt] [3]
OCR MEI C3 Q4
4 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7049002-f97a-4c83-a7d6-eba28e3b589a-2_824_816_885_699} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(y\)-coordinate of P .
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
  3. Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
  4. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
OCR MEI C3 Q1
1 A curve has implicit equation \(y ^ { 2 } + 2 x \ln y = x ^ { 2 }\).
Verify that the point \(( 1,1 )\) lies on the curve, and find the gradient of the curve at this point.
OCR MEI C3 Q2
2 A curve has equation \(x ^ { 2 } + 2 y ^ { 2 } = 4 x\).
  1. By differentiating implicitly, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
    [0pt]
  2. Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]
OCR MEI C3 Q3
3 Given that \(y = \ln \left( \sqrt { \frac { 2 x - 1 } { 2 x + 1 } } \right)\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 x - 1 } - \frac { 1 } { 2 x + 1 }\).
OCR MEI C3 Q4
4 Fig. 7 shows the curve \(x ^ { 3 } + y ^ { 3 } = 3 x y\). The point P is a turning point of the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{09d318c7-27b9-43aa-b4a0-e32ea8bd53c5-1_593_531_1573_805} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - x ^ { 2 } } { y ^ { 2 } - x }\).
  2. Hence find the exact \(x\)-coordinate of P .
OCR MEI C3 Q5
5 Find the gradient at the point \(( 0 , \ln 2 )\) on the curve with equation \(\mathrm { e } ^ { 2 y } = 5 - \mathrm { e } ^ { - x }\).
OCR MEI C3 Q6
6 A curve is defined by the equation \(( x + y ) ^ { 2 } = 4 x\). The point \(( 1,1 )\) lies on this curve.
By differentiating implicitly, show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x + y } - 1\).
Hence verify that the curve has a stationary point at \(( 1,1 )\).
OCR MEI C3 Q7
7 A curve is defined by the equation \(\sin 2 x + \cos y = \sqrt { 3 }\).
  1. Verify that the point \(\mathrm { P } \left( \frac { 1 } { 6 } \pi , \frac { 1 } { 6 } \pi \right)\) lies on the curve.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point P .
OCR MEI C3 Q8
8
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
OCR MEI C3 Q1
1
  1. Differentiate \(\sqrt { 1 + 3 x ^ { 2 } }\).
  2. Hence show that the derivative of \(x \sqrt { 1 + 3 x ^ { 2 } }\) is \(\frac { 1 + 6 x ^ { 2 } } { \sqrt { 1 + 3 x ^ { 2 } } }\).
OCR MEI C3 Q2
2 Given that \(y ^ { 3 } = x y - x ^ { 2 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y ^ { 2 } - x }\).
Hence show that the curve \(y ^ { 3 } = x y - x ^ { 2 }\) has a stationary point when \(x = \frac { 1 } { 8 }\).
OCR MEI C3 Q3
3 Fig. 8 shows the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\). P is the point on this curve with \(x\)-coordinate 1 , and R is the point \(\left( 0 , - \frac { 7 } { 8 } \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e3850377-bd1a-4e3c-8424-e3db7fd3c4db-2_1018_994_481_611} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the gradient of PR.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that PR is a tangent to the curve.
  3. Find the exact coordinates of the turning point Q .
  4. Differentiate \(x \ln x - x\). Hence, or otherwise, show that the area of the region enclosed by the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) is \(\frac { 59 } { 24 } - \frac { 1 } { 4 } \ln 2\).
OCR MEI C3 Q4
4 The equation of a curve is given by \(\mathrm { e } ^ { 2 y } = 1 + \sin x\).
  1. By differentiating implicitly, find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find an expression for \(y\) in terms of \(x\), and differentiate it to verify the result in part (i).
OCR MEI C3 Q5
5 Fig. 6 shows the curve \(\mathrm { e } ^ { 2 y } = x ^ { 2 } + y\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e3850377-bd1a-4e3c-8424-e3db7fd3c4db-3_736_1331_893_459} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x } { 2 \mathrm { e } ^ { 2 y } - 1 }\).
  2. Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient.
OCR MEI C3 Q1
1 Given that \(x ^ { 2 } + x y + y ^ { 2 } = 12\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
OCR MEI C3 Q2
2 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce82bfc4-90dd-4127-a11c-281cdcca70cf-1_621_934_1046_664} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts (A) and (B) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR MEI C3 Q3
3 Fig. 6 shows the triangle OAP , where O is the origin and A is the point \(( 0,3 )\). The point \(\mathrm { P } ( x , 0 )\) moves on the positive \(x\)-axis. The point \(\mathrm { Q } ( 0 , y )\) moves between O and A in such a way that \(\mathrm { AQ } + \mathrm { AP } = 6\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce82bfc4-90dd-4127-a11c-281cdcca70cf-2_488_848_514_640} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Write down the length AQ in terms of \(y\). Hence find AP in terms of \(y\), and show that $$( y + 3 ) ^ { 2 } = x ^ { 2 } + 9$$
  2. Use this result to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x } { y + 3 }\).
  3. When \(x = 4\) and \(y = 2 , \frac { \mathrm {~d} x } { \mathrm {~d} t } = 2\). Calculate \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) at this time.
OCR MEI C3 Q4
4 A curve has equation \(2 y ^ { 2 } + y = 9 x ^ { 2 } + 1\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at the point \(\mathrm { A } ( 1,2 )\).
  2. Find the coordinates of the points on the curve at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
OCR MEI C3 Q5
5 Given that \(y = ( 1 + 6 x ) ^ { \frac { 1 } { 3 } }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { y ^ { 2 } }\).
OCR MEI C3 Q6
6 A curve is defined implicitly by the equation $$y ^ { 3 } = 2 x y + x ^ { 2 }$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 ( x + y ) } { 3 y ^ { 2 } - 2 x }\).
  2. Hence write down \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(x\) and \(y\).