Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q3
3 Differentiate the following functions.
  1. \(\quad y = \left( x ^ { 2 } + 3 \right) ^ { 5 }\)
  2. \(y = \frac { \sin 2 x } { x }\)
OCR MEI C3 Q4
4 A curve has equation \(y ^ { 2 } = 5 x - 4\).
Find the gradient of the curve at the points where \(x = 8\).
OCR MEI C3 Q5
5 Given that \(x\) and \(t\) are related by the formula \(x = x _ { 0 } \mathrm { e } ^ { - 3 t }\), show that \(t = \ln \left( \frac { a } { x } \right) ^ { b }\) where \(a\) and \(b\) are to be determined.
OCR MEI C3 Q6
6
  1. Find \(\int ( 2 x - 3 ) ^ { 7 } \mathrm {~d} x\).
  2. Use the substitution \(u = x ^ { 2 } + 1\), or otherwise, to find \(\int _ { 1 } ^ { 2 } x \left( x ^ { 2 } + 1 \right) ^ { 3 } \mathrm {~d} x\).
OCR MEI C3 Q7
7 The functions \(f , g\) and \(h\) are defined as follows. $$\mathrm { f } ( x ) = 2 x \quad \mathrm {~g} ( x ) = x ^ { 2 } \quad \mathrm {~h} ( x ) = x + 2$$ Find each of the following as functions of \(x\).
  1. \(\mathrm { f } ^ { 2 } ( x )\),
  2. \(\operatorname { fgh } ( x )\),
  3. \(\mathrm { h } ^ { - 1 } ( x )\).
OCR MEI C3 Q8
8 A curve has equation \(y = ( x + 2 ) \mathrm { e } ^ { - x }\).
  1. Find the coordinates of the points where the curve cuts the axes.
  2. Find the coordinates of the stationary point, S , on the curve.
  3. By evaluating \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at S , determine whether the stationary point is a maximum or a minimum.
  4. Sketch the curve in the domain \(- 3 < x < 3\).
  5. Find where the normal to the curve at the point \(( 0,2 )\) cuts the curve again.
  6. Find the area of the region bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
OCR MEI C3 Q1
1 John asserts that the expression \(n ^ { 2 } + n + 11\) is prime for all positive integer values of \(n\). Show that John is wrong in his assertion.
OCR MEI C3 Q2
2
  1. Show that \(\mathrm { f } ( x ) = \left| x ^ { 3 } \right|\) is an even function.
  2. It is suggested that the function \(\mathrm { g } ( x ) = ( x - 1 ) ^ { 3 }\) is odd. Prove that this is false.
OCR MEI C3 Q4
4 The volume of a sphere, \(V \mathrm {~cm} ^ { 3 }\) is given by the formula \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\) where \(r \mathrm {~cm}\) is the radius.
The radius of a sphere increases at a constant rate of 2 cm per second.
Find the rate of increase of \(V\) when \(r = 10 \mathrm {~cm}\).
OCR MEI C3 Q5
5 The equation of a circle is \(x ^ { 2 } + y ^ { 2 } = 25\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { x } { y }\).
  2. Hence find the equation of the normal to the circle at the point ( 3,4 ).
OCR MEI C3 Q6
6
  1. Find \(\int x \cos 2 x d x\).
  2. Using the substitution \(u = x ^ { 2 } + 1\), or otherwise, find the exact value of \(\int _ { 2 } ^ { 3 } \frac { x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
OCR MEI C3 Q7
7 Fig. 7 shows the graphs of the curves \(y = \mathrm { e } ^ { - x }\) and \(y = \mathrm { e } ^ { - x } \sin x\) for \(0 \leq x \leq \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3853d1e7-ae1f-4eca-93c7-96f03b6d31c3-3_407_793_1085_740} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} The maximum point on \(y = \mathrm { e } ^ { - x } \sin x\) is at A , and the curves touch at B .
\(\mathrm { A } ^ { \prime }\) and \(\mathrm { B } ^ { \prime }\) are the points on the \(x\)-axis such that \(\mathrm { A } ^ { \prime } \mathrm { A }\) and \(\mathrm { B } ^ { \prime } \mathrm { B }\) are parallel to the \(y\)-axis.
Show that \(\mathrm { OA } ^ { \prime } = \mathrm { A } ^ { \prime } \mathrm { B } ^ { \prime }\).
OCR MEI C3 Q8
8 Fig. 8 shows part of the graph of the function \(y = 5 x ( 2 x - 1 ) ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3853d1e7-ae1f-4eca-93c7-96f03b6d31c3-4_508_803_450_703} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the \(x\)-coordinate of S , the turning point of the curve.
  2. Find the area of the shaded region enclosed between the curve and the \(x\)-axis.
  3. Given that \(\mathrm { f } ( x ) = 5 x ( 2 x - 1 ) ^ { 3 }\), show that \(\mathrm { f } ( x + 0.5 ) = 40 x ^ { 3 } ( x + 0.5 )\).
  4. Find \(\int _ { - \frac { 1 } { 2 } } ^ { 0 } 40 x ^ { 3 } ( x + 0.5 ) \mathrm { d } x\).
  5. Explain, with the aid of a sketch, the connection between your answer to parts (ii) and (iv).
OCR MEI C3 Q2
2
  1. Expand \(\left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 }\).
  2. Hence find \(\int \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 } \mathrm {~d} x\).
OCR MEI C3 Q3
3
  1. Sketch the graph of \(y = | 3 x - 6 |\).
  2. Solve the equation \(| 3 x - 6 | = x + 4\) and illustrate your answer on your graph.
    \(4 \quad\) Find \(\int x \sin 3 x \mathrm {~d} x\).
    \(5 \quad\) Make \(x\) the subject of \(t = \ln \sqrt { \frac { 5 } { ( x - 3 ) } }\).
OCR MEI C3 Q6
6 The function \(\mathrm { f } ( x )\) is defined as \(\mathrm { f } ( x ) = \frac { \ln x } { x }\). The graph of the function is shown in Fig. 6 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7998a08-229a-40d2-ba34-b5f264139295-2_369_675_1930_689} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Give the coordinates of the point, P , where the curve crosses the \(x\)-axis.
  2. Use calculus to find the coordinates of the stationary point, Q , and show that it is a maximum.
OCR MEI C3 Q7
7 An oil slick is circular with radius \(r \mathrm {~km}\) and area \(A \mathrm {~km} ^ { 2 }\). The radius increases with time at a rate given by \(\frac { \mathrm { d } r } { \mathrm {~d} t } = 0.5\), in kilometres per hour.
  1. Show that \(\frac { \mathrm { dA } } { \mathrm { d } t } = \pi r\).
  2. Find the rate of increase of the area of the slick at a time when the radius is 6 km .
OCR MEI C3 Q8
8 Fig. 8 shows the graph of \(y = x \sqrt { 1 + x }\). The point P on the curve is on the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7998a08-229a-40d2-ba34-b5f264139295-3_433_800_895_587} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of P .
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x + 2 } { 2 \sqrt { 1 + x } }\).
  3. Hence find the coordinates of the turning point on the curve. What can you say about the gradient of the curve at P ?
  4. By using a suitable substitution, show that \(\int _ { - 1 } ^ { 0 } x \sqrt { 1 + x } \mathrm {~d} x = \int _ { 0 } ^ { 1 } \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u\). Evaluate this integral, giving your answer in an exact form.
    What does this value represent?
  5. Use your answer to part (ii) to differentiate \(y = x \sqrt { 1 + x } \sin 2 x\) with respect to \(x\).
    (You need not simplify your result.)
OCR MEI C3 Q9
9 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = 2 x - 1$$ for all real values of \(x\).
  1. State the ranges of \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\). Explain why \(\mathrm { f } ( x )\) has no inverse.
  2. Find an expression for the inverse function \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\). Sketch the graphs of \(y = \mathrm { g } ( x )\) and \(y = \mathrm { g } ^ { - 1 } ( x )\) on the same axes.
  3. Find expressions for \(\operatorname { gf } ( x )\) and \(\operatorname { fg } ( x )\).
  4. Solve the equation \(\operatorname { gf } ( x ) = \mathrm { fg } ( x )\). Sketch the graphs of \(y = \operatorname { gf } ( x )\) and \(y = \operatorname { fg } ( x )\) on the same axes to illustrate your answer.
  5. Show that the equation \(\mathrm { f } ( x + a ) = \mathrm { g } ^ { 2 } ( x )\) has no solution if \(a > \frac { 1 } { 4 }\).
OCR MEI C3 Q1
1 Find \(\int \sqrt [ 3 ] { 2 x - 1 } \mathrm {~d} x\).
OCR MEI C3 Q2
2 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-1_959_1469_748_317} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
OCR MEI C3 Q3
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) \mathrm { d } x\), giving your answer in exact form.
OCR MEI C3 Q4
4 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ea594c5-52ba-4467-a098-cb66004b5a38-2_431_977_728_602} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve.
OCR MEI C3 Q5
5 Using a suitable substitution or otherwise, show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 3 + \cos 2 x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
OCR MEI C3 Q1
1 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = ( 1 - x ) \mathrm { e } ^ { 2 x }\), with its turning point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75eebbfb-7bfa-4382-a6d7-1c5a7f3f419a-1_722_817_450_642} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Write down the coordinates of the intercepts of \(y = \mathrm { f } ( x )\) with the \(x\) - and \(y\)-axes.
  2. Find the exact coordinates of the turning point P .
  3. Show that the exact area of the region enclosed by the curve and the \(x\) - and \(y\)-axes is \(\frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 } - 3 \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\).
  4. Express \(\mathrm { g } ( x )\) in terms of \(x\). Sketch the curve \(y = \mathrm { g } ( x )\) on the copy of Fig. 8, indicating the coordinates of its intercepts with the \(x\) - and \(y\)-axes and of its turning point.
  5. Write down the exact area of the region enclosed by the curve \(y = \mathrm { g } ( x )\) and the \(x\) - and \(y\)-axes.