OCR
Further Pure Core 1
2020
November
Q6
5 marks
Standard +0.8
6 The equations of two non-intersecting lines, \(l _ { 1 }\) and \(l _ { 2 }\), are
\(l _ { 1 } : \mathbf { r } = \left( \begin{array} { c } 1 \\ 2 \\ - 1 \end{array} \right) + \lambda \left( \begin{array} { c } 2 \\ 1 \\ - 2 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { c } 2 \\ 2 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { c } 1 \\ - 1 \\ 4 \end{array} \right)\).
Find the shortest distance between lines \(l _ { 1 }\) and \(l _ { 2 }\).
OCR
Further Pure Core 1
2021
November
Q5
4 marks
Standard +0.8
5 Use de Moivre's theorem to find the constants \(A , B\) and \(C\) in the identity \(\sin ^ { 5 } \theta \equiv A \sin \theta + B \sin 3 \theta + C \sin 5 \theta\).
\(6 O\) is the origin of a coordinate system whose units are cm .
The points \(A , B , C\) and \(D\) have coordinates ( 1,0 ), ( 1,4 ), ( 6,9 ) and ( 0,9 ) respectively.
The arc \(B C\) is part of the curve with equation \(x ^ { 2 } + ( y - 10 ) ^ { 2 } = 37\).
The closed shape \(O A B C D\) is formed, in turn, from the line segments \(O A\) and \(A B\), the arc \(B C\) and the line segments \(C D\) and \(D O\) (see diagram).
A funnel can be modelled by rotating \(O A B C D\) by \(2 \pi\) radians about the \(y\)-axis.
\includegraphics[max width=\textwidth, alt={}, center]{58e9b480-f561-4a28-b911-7d9d6a80e976-3_641_1131_808_242}
Find the volume of the funnel according to the model.
OCR
Further Pure Core 1
Specimen
Q6
5 marks
Standard +0.8
6 The equation \(x ^ { 3 } + 2 x ^ { 2 } + x + 3 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
The equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\) has roots \(\alpha \beta , \beta \gamma\) and \(\gamma \alpha\).
Find the values of \(p , q\) and \(r\).