OCR Further Pure Core 1 2020 November — Question 8

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2020
SessionNovember
TopicHyperbolic functions

8
  1. Using exponentials, show that \(\cosh 2 u \equiv 2 \sinh ^ { 2 } u + 1\).
  2. By differentiating both sides of the identity in part (a) with respect to \(u\), show that \(\sinh 2 u \equiv 2 \sinh u \cosh u\).
  3. Use the substitution \(\mathrm { x } = \sinh ^ { 2 } \mathrm { u }\) to find \(\int \sqrt { \frac { x } { x + 1 } } \mathrm {~d} x\). Give your answer in the form asinh \(^ { - 1 } \mathrm {~b} \sqrt { \mathrm { x } } + \mathrm { f } ( \mathrm { x } )\) where \(a\) and \(b\) are integers and \(\mathrm { f } ( x )\) is a function to be determined.
  4. Hence determine the exact area of the region between the curve \(\mathrm { y } = \sqrt { \frac { \mathrm { x } } { \mathrm { x } + 1 } }\), the \(x\)-axis, the line \(x = 1\) and the line \(x = 2\). Give your answer in the form \(\mathrm { p } + \mathrm { q } \mid \mathrm { nr }\) where \(p , q\) and \(r\) are numbers to be determined.