Questions — OCR PURE (137 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR PURE Q8
8 In this question you must show detailed reasoning. The lines \(y = \frac { 1 } { 2 } x\) and \(y = - \frac { 1 } { 2 } x\) are tangents to a circle at \(( 2,1 )\) and \(( - 2,1 )\) respectively. Find the equation of the circle in the form \(x ^ { 2 } + y ^ { 2 } + a x + b y + c = 0\), where \(a , b\) and \(c\) are constants.
OCR PURE Q11
11 In this question you must show detailed reasoning. A biased four-sided spinner has edges numbered \(1,2,3,4\). When the spinner is spun, the probability that it will land on the edge numbered \(X\) is given by
\(P ( X = x ) = \begin{cases} \frac { 1 } { 2 } - \frac { 1 } { 10 } x & x = 1,2,3,4 ,
0 & \text { otherwise } . \end{cases}\)
  1. Draw a table showing the probability distribution of \(X\). The spinner is spun three times and the value of \(X\) is noted each time.
  2. Find the probability that the third value of \(X\) is greater than the sum of the first two values of \(X\).
OCR PURE Q5
5 In this question you must show detailed reasoning. The diagram shows part of the graph of \(y = x ^ { 3 } - 4 x\).
\includegraphics[max width=\textwidth, alt={}, center]{e42b1a99-c3ca-4ce1-becd-cd346aec757e-05_499_695_404_251} Determine the total area enclosed by the curve and the \(x\)-axis.
OCR PURE Q8
8 In this question you must show detailed reasoning. A circle has equation \(x ^ { 2 } + y ^ { 2 } - 6 x - 4 y + 12 = 0\). Two tangents to this circle pass through the point \(( 0,1 )\). You are given that the scales on the \(x\)-axis and the \(y\)-axis are the same.
Find the angle between these two tangents.
OCR PURE Q8
8 In this question you must show detailed reasoning. The diagram shows part of the graph of \(y = 2 x ^ { \frac { 1 } { 3 } } - \frac { 7 } { x ^ { \frac { 1 } { 3 } } }\). The shaded region is enclosed by the curve, the \(x\)-axis and the lines \(x = 8\) and \(x = a\), where \(a > 8\).
\includegraphics[max width=\textwidth, alt={}, center]{efde7b10-b4f3-469f-ba91-b765a16ea835-5_577_1164_477_438} Given that the area of the shaded region is 45 square units, find the value of \(a\).
OCR PURE 2066 Q1
1 In this question you must show detailed reasoning. Solve the equation \(x ( 3 - \sqrt { 5 } ) = 24\), giving your answer in the form \(a + b \sqrt { 5 }\), where \(a\) and \(b\) are positive integers.
OCR PURE Q3
3 In this question you must show detailed reasoning. Find the equation of the normal to the curve \(y = 4 \sqrt { x } - 3 x + 1\) at the point on the curve where \(x = 4\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR PURE Q4
4 In this question you must show detailed reasoning. The cubic polynomial \(6 x ^ { 3 } + k x ^ { 2 } + 57 x - 20\) is denoted by \(\mathrm { f } ( x )\). It is given that \(( 2 x - 1 )\) is a factor of \(\mathrm { f } ( x )\).
  1. Use the factor theorem to show that \(k = - 37\).
  2. Using this value of \(k\), factorise \(\mathrm { f } ( x )\) completely.
    1. Hence find the three values of \(t\) satisfying the equation \(6 \mathrm { e } ^ { - 3 t } - 37 \mathrm { e } ^ { - 2 t } + 57 \mathrm { e } ^ { - t } - 20 = 0\).
    2. Express the sum of the three values found in part (c)(i) as a single logarithm.
OCR PURE Q6
6 In this question you must show detailed reasoning.
\includegraphics[max width=\textwidth, alt={}]{7fc02f90-8f8b-4153-bba1-dc0807124e96-4_650_661_1765_242}
The diagram shows the line \(3 y + x = 7\) which is a tangent to a circle with centre \(( 3 , - 2 )\).
Find an equation for the circle.
OCR PURE Q2
2 In this question you must show detailed reasoning. Solve the equation \(3 x + 1 = 4 \sqrt { x }\).
OCR PURE Q2
2 In this question you must show detailed reasoning. Solve the equation \(x \sqrt { 5 } + 32 = x \sqrt { 45 } + 2 x\). Give your answer in the form \(a \sqrt { 5 } + b\), where \(a\) and \(b\) are integers to be determined.
OCR PURE Q8
8 In this question you must show detailed reasoning. Given that \(\int _ { 4 } ^ { a } \left( \frac { 4 } { \sqrt { x } } + 3 \right) \mathrm { d } x = 7\), find the value of \(a\).