Questions — OCR Further Pure Core 1 (134 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR Further Pure Core 1 2021 June Q4
4 The equations of two non-intersecting lines, \(l _ { 1 }\) and \(l _ { 2 }\), are
\(l _ { 1 } : \mathbf { r } = \left( \begin{array} { c } 1
2
- 1 \end{array} \right) + \lambda \left( \begin{array} { c } 2
1
- 2 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { c } 2
2
- 3 \end{array} \right) + \mu \left( \begin{array} { c } 1
- 1
4 \end{array} \right)\).
Find the shortest distance between lines \(l _ { 1 }\) and \(l _ { 2 }\).
OCR Further Pure Core 1 2021 June Q5
5 Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9 .
OCR Further Pure Core 1 2021 June Q6
6 You are given that the cubic equation \(2 x ^ { 3 } + p x ^ { 2 } + q x - 3 = 0\), where \(p\) and \(q\) are real numbers, has a complex root \(\alpha = 1 + i \sqrt { 2 }\).
  1. Write down a second complex root, \(\beta\).
  2. Determine the third root, \(\gamma\).
  3. Find the value of \(p\) and the value of \(q\).
  4. Show that if \(n\) is an integer then \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } = 2 \times 3 ^ { \frac { 1 } { 2 } n } \times \cos n \theta + \frac { 1 } { 2 ^ { n } }\) where \(\tan \theta = \sqrt { 2 }\).
OCR Further Pure Core 1 2021 June Q7
38 marks
7 A curve has cartesian equation \(x ^ { 3 } + y ^ { 3 } = 2 x y\).
\(C\) is the portion of the curve for which \(x \geqslant 0\) and \(y \geqslant 0\). The equation of \(C\) in polar form is given by \(r = \mathrm { f } ( \theta )\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Find \(f ( \theta )\).
  2. Find an expression for \(\mathrm { f } \left( \frac { 1 } { 2 } \pi - \theta \right)\), giving your answer in terms of \(\sin \theta\) and \(\cos \theta\).
  3. Hence find the line of symmetry of \(C\).
  4. Find the value of \(r\) when \(\theta = \frac { 1 } { 4 } \pi\).
  5. By finding values of \(\theta\) when \(r = 0\), show that \(C\) has a loop. \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
    b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
    A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
    e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
    • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
    • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
    Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
    Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
    f Rules for replaced work and multiple attempts:
    • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
    • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
    • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
    For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
    If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \section*{Abbreviations}
    QuestionAnswerMarksAOGuidance
    7(a)\(\begin{aligned}x = r \cos \theta , y = r \sin \theta \Rightarrow ( r \cos \theta ) ^ { 3 } + ( r \sin \theta ) ^ { 3 } = 2 r \cos \theta \cdot r \sin \theta
    \Rightarrow r \left( \cos ^ { 3 } \theta + \sin ^ { 3 } \theta \right) = 2 \cos \theta \sin \theta
    \Rightarrow r = \frac { 2 \cos \theta \sin \theta } { \cos ^ { 3 } \theta + \sin ^ { 3 } \theta } \end{aligned}\)
    M1
    A1
    3.1a
    1.1
    Substitution
    May see "or \(r = 0\) " but not required.
    [2]
    (b)\(\begin{aligned} f \left( \frac { 1 } { 2 } \pi - \theta \right)= \frac { 2 \cos \left( \frac { 1 } { 2 } \pi - \theta \right) \sin \left( \frac { 1 } { 2 } \pi - \theta \right) } { \cos ^ { 3 } \left( \frac { 1 } { 2 } \pi - \theta \right) + \sin ^ { 3 } \left( \frac { 1 } { 2 } \pi - \theta \right) }
    = \frac { 2 \sin \theta \cos \theta } { \sin ^ { 3 } \theta + \cos ^ { 3 } \theta } \end{aligned}\)
    М1
    A1
    1.1a
    1.1
    Correct substitution into their \(\mathrm { f } ( \theta )\)
    [2]
    (c)So the line of symmetry is \(\theta = \frac { \pi } { 4 }\)B12.2a
    Allow \(y = x\).
    Must have \(\theta =\)
    [1]
    (d)\(r = \mathrm { f } \left( \frac { 1 } { 4 } \pi \right) = \sqrt { 2 }\)B11.1BC
    [1]
    (e)
    \(r = 0\) when \(\theta = 0\).
    \(r = 0\) also when \(\theta = \frac { \pi } { 2 }\)
    In range \(0 < \theta < \frac { \pi } { 2 } , r > 0\) and is continuous
    So there is a loop
    B13.1a
    For both, ignore extras.
    Conclusion - both statements for \(r\) need to be mentioned
    [2]
OCR Further Pure Core 1 2021 June Q1
1 Find an expression for \(1 \times 2 ^ { 2 } + 2 \times 3 ^ { 2 } + 3 \times 4 ^ { 2 } + \ldots + n ( n + 1 ) ^ { 2 }\) in terms of \(n\). Give your answer in fully factorised form.
OCR Further Pure Core 1 2021 June Q2
2
You are given the matrix \(\mathbf { A } = \left( \begin{array} { c c c } 1 & 0 & 0
0 & 0 & 1
0 & - 1 & 0 \end{array} \right)\).
  1. Find \(\mathbf { A } ^ { 4 }\).
  2. Describe the transformation that A represents. The matrix \(\mathbf { B }\) represents a reflection in the plane \(x = 0\).
  3. Write down the matrix \(B\). The point \(P\) has coordinates \(( 2,3,4 )\). The point \(P ^ { \prime }\) is the image of \(P\) under the transformation represented by \(\mathbf { B }\).
  4. Find the coordinates of \(P ^ { \prime }\).
OCR Further Pure Core 1 2021 June Q3
3
  1. Using exponentials, show that \(\cosh 2 u \equiv 2 \sinh ^ { 2 } u + 1\).
  2. By differentiating both sides of the identity in part (a) with respect to \(u\), show that \(\sinh 2 u \equiv 2 \sinh u \cosh u\).
  3. Use the substitution \(x = \sinh ^ { 2 } u\) to find \(\int \sqrt { \frac { x } { x + 1 } } \mathrm {~d} x\). Give your answer in the form \(a \sinh ^ { - 1 } b \sqrt { x } + \mathrm { f } ( x )\) where \(a\) and \(b\) are integers and \(\mathrm { f } ( x )\) is a function to be determined.
  4. Hence determine the exact area of the region between the curve \(y = \sqrt { \frac { x } { x + 1 } }\), the \(x\)-axis, the line \(x = 1\) and the line \(x = 2\). Give your answer in the form \(p + q \ln r\) where \(p , q\) and \(r\) are numbers to be determined.
OCR Further Pure Core 1 2021 June Q4
4 A particle of mass 0.5 kg is initially at point \(O\). It moves from rest along the \(x\)-axis under the influence of two forces \(F _ { 1 } \mathrm {~N}\) and \(F _ { 2 } \mathrm {~N}\) which act parallel to the \(x\)-axis. At time \(t\) seconds the velocity of the particle is \(v \mathrm {~ms} ^ { - 1 }\).
\(F _ { 1 }\) is acting in the direction of motion of the particle and \(F _ { 2 }\) is resisting motion.
In an initial model
  • \(F _ { 1 }\) is proportional to \(t\) with constant of proportionality \(\lambda > 0\),
  • \(F _ { 2 }\) is proportional to \(v\) with constant of proportionality \(\mu > 0\).
    1. Show that the motion of the particle can be modelled by the following differential equation.
$$\frac { 1 \mathrm {~d} v } { 2 \mathrm {~d} t } = \lambda t - \mu v$$
  • Solve the differential equation in part (a), giving the particular solution for \(v\) in terms of \(t\), \(\lambda\) and \(\mu\). You are now given that \(\lambda = 2\) and \(\mu = 1\).
  • Find a formula for an approximation for \(v\) in terms of \(t\) when \(t\) is large. In a refined model
    • \(F _ { 1 }\) is constant, acting in the direction of motion with magnitude 2 N ,
    • \(F _ { 2 }\) is as before with \(\mu = 1\).
    • Write down a differential equation for the refined model.
    • Without solving the differential equation in part (d), write down what will happen to the velocity in the long term according to this refined model.
  • OCR Further Pure Core 1 2021 June Q5
    31 marks
    5
    Show that \(\int _ { 0 } ^ { \frac { 1 } { \sqrt { 3 } } } \frac { 4 } { 1 - x ^ { 4 } } \mathrm {~d} x = \ln ( a + \sqrt { b } ) + \frac { \pi } { c }\) where \(a , b\) and \(c\) are integers to be determined. \section*{Total Marks for Question Set 6: 37} \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
    b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
    A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
    e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
    • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
    • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
    Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
    Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
    f Rules for replaced work and multiple attempts:
    • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
    • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
    • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
    For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
    If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \section*{Abbreviations}