Questions — OCR FS1 AS (30 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR FS1 AS 2021 June Q1
1 Every time a spinner is spun, the probability that it shows the number 4 is 0.2 , independently of all other spins.
  1. A pupil spins the spinner repeatedly until it shows the number 4 . Find the mean of the number of spins required.
  2. Calculate the probability that the number of spins required is between 3 and 10 inclusive.
  3. Each pupil in a class of 30 spins the spinner until it shows the number 4 . Out of the 30 pupils, the number of pupils who require at least 10 spins is denoted by \(X\). Determine the variance of \(X\).
OCR FS1 AS 2021 June Q2
27 marks
2 After a holiday organised for a group, the company organising the holiday obtained scores out of 10 for six different aspects of the holiday. The company obtained responses from 100 couples and 100 single travellers. The total scores for each of the aspects are given in the following table. \end{table}
QuestionAnswerMarkAOGuidance
1(a)\(\frac { 1 } { 0.2 } = 5\)M1 A1 [2]3.3 1.1Geometric distribution soi 5 (or \(5.00 \ldots\) ) only
1(b)\(0.8 ^ { 2 } - 0.8 ^ { 10 }\) \(= \mathbf { 0 . 5 3 3 } \quad ( 0.5326258 \ldots )\)М1 A1 [2]1.1 3.4
Allow for powers 2, 3, 4 and 9, 10, 11 .
Awrt 0.533, www. [5201424/976562]
Or \(0.2 \left( 0.8 ^ { 2 } + \ldots . + 0.8 ^ { 9 } \right) , \pm 1\) term at either end [0.506, 0.378, 0.275, 0.405, 0.302, 0.554, 0.426, 0.324]
1(c)
\(\mathrm { P } ( \geq 10 ) = 0.8 ^ { 9 }\)
\(= 0.1342 \ldots\)
B(30, 0.1342...)
Variance \(= n p q\) = 3.486…
M1
A1
М1
A1ft [4]
3.1b
1.1
3.1b
1.1
Or \(0.8 ^ { 10 }\). Can be implied by correct \(p\)
[0.10737… is M1A0 here]
Stated or implied, their \(0.8 ^ { 9 }\) or \(0.8 ^ { 10 }\)
In range [3.48, 3.49]
SC: 0.134(2) oe not properly shown: B2 for correct final answer.
SC: 2.875 from \(0.8 ^ { 10 }\) : M1A0M1A1ft
QuestionAnswerMarkAOGuidance
2(a)Test is for rankings/rankings arbitrary/not bivariate normal etcB1 [1]2.4OE
2(b)
\(\mathrm { H } _ { 0 } : \rho _ { s } = 0 , \mathrm { H } _ { 1 } : \rho _ { s } > 0\), where \(\rho _ { s }\) is the population rank correlation coefficient
Ranks 543612
512643
\(\Sigma d ^ { 2 } = 20\)
\(r _ { s } = 1 - \frac { 6 \times 20 } { 6 \times 35 }\)
\(= 3 / 7\) or \(0.42857 \ldots\)
<0.9429
B1
B1
M1
A1
B1
1.1
1.1
1.1
1.1
1.1
Allow \(\rho _ { s }\) not defined; allow \(\rho\).
Allow: \(\mathrm { H } _ { 0 }\) : no association between rankings.
\(\mathrm { H } _ { 1 }\) : positive association (but not \(\mathrm { H } _ { 1 }\) : association)
Do not reject \(\mathrm { H } _ { 0 }\)
Insufficient evidence of association between ranking given by the two categories
M1ft
A1ft
[7]
1.1
2.2b
FT on their \(\Sigma d ^ { 2 }\) only
2(c)Not dependent on any distributional assumptions
B1
[1]
1.2Oe (cf. Specification, 5.08f)
QuestionAnswerMarkAOGuidance
3(a)Failures occur to no fixed pattern/are not predictableB1 [1]1.1OE. NOT "independent"
3(b)Failures occur independently of one another and at constant average rate
B1
B1
[2]
1.1
1.1
Not recoverable from (a) if independence not restated here; must be contextualised
Ignore "singly". Allow "uniform" rate, not "constant rate" or "constant probability"; must be contextualised
3(c)
Variance (1.6384) \(\approx\) mean
So suggests that it is likely to be well modelled
M1
A1
[2]
1.1
3.5a
Compare variance (or SD). Allow square/square-root confusion
Correct comparison and conclusion, 1.64 or better seen
3(d)\(\mathrm { e } ^ { - 1.61 }\)
B1
[1]
3.4Exact needed, allow even if \(0 !\) or \(1.61 ^ { 0 }\) or both left in
3(e)
1\(\geq 2\)
0.3220.478
B1
B1
[2]
3.4
1.1
One correct e.g. 0.3218
Other correct e.g. 0.4783
3(f)\(\mathrm { P } ( F = 1 )\) will be smaller as single failures are less likely
B1*
depB1
[2]
3.5c
3.3
OE. Partial answer: B1
OCR FS1 AS 2017 Specimen Q4
53 marks
4
  1. Four men and four women stand in a random order in a straight line. Determine the probability that no one is standing next to a person of the same gender.
  2. \(x\) men, including Mr Adam, and \(x\) women, including Mrs Adam, are arranged at random in a straight line. Show that the probability that Mr Adam is standing next to Mrs Adam is \(\frac { 1 } { X }\).
  3. The random variable \(X\) has the distribution \(\operatorname { Geo } ( 0.6 )\).
    (a) Find \(\mathrm { P } ( X \geq 8 )\).
    (b) Find the value of \(\mathrm { E } ( X )\).
    (c) Find the value of \(\operatorname { Var } ( X )\).
  4. The random variable \(Y\) has the distribution \(\operatorname { Geo } ( p )\). It is given that \(\mathrm { P } ( Y < 4 ) = 0.986\) correct to 3 significant figures. Use an algebraic method to find the value of \(p\). Sabrina counts the number of cars passing her house during randomly chosen one minute intervals. Two assumptions are needed for the number of cars passing her house in a fixed time interval to be well modelled by a Poisson distribution.
  5. State these two assumptions.
  6. For each assumption in part (i) give a reason why it might not be a reasonable assumption for this context. Assume now that the number of cars that pass Sabrina's house in one minute can be well modelled by the distribution \(\operatorname { Po } ( 0.8 )\).
  7. (a) Write down an expression for the probability that, in a given one minute period, exactly \(r\) cars pass Sabrina's house.
    (b) Hence find the probability that, in a given one minute period, exactly 2 cars pass Sabrina's house.
  8. Find the probability that, in a given 30 minute period, at least 28 cars pass Sabrina's house.
  9. The number of bicycles that pass Sabrina's house in a 5 minute period is a random variable with the distribution \(\operatorname { Po } ( 1.5 )\). Find the probability that, in a given 10 minute period, the total number of cars and bicycles that pass Sabrina's house is between 12 and 15 inclusive. State a necessary condition. 7 The discrete random variable \(X\) is equally likely to take values 0,1 and 2 . \(3 N\) observations of \(X\) are obtained, and the observed frequencies corresponding to \(X = 0 , X = 1\) and \(X = 2\) are given in the following table. \section*{2. Subject-specific Marking Instructions for AS Level Further Mathematics A} Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
    If you are in any doubt whatsoever you should contact your Team Leader.
    The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
    Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
    Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
    f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km , when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for \(g\). E marks will be lost except when results agree to the accuracy required in the question. Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
    h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader. If in any case the scheme operates with considerable unfairness consult your Team Leader. \end{table} PS = Problem Solving
    M = Modelling \section*{Summary of Updates}
    5(i)(a)
    5(i)(b)
    5(i)(c)
    5(ii)
    \begin{center} \begin{tabular}{|l|l|} \hline \multirow[t]{8}{*}{6(i)} &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline \multirow[t]{10}{*}{6(ii)} &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline &
    \hline
OCR FS1 AS 2017 Specimen Q7
7 The discrete random variable \(X\) is equally likely to take values 0,1 and 2 . \(3 N\) observations of \(X\) are obtained, and the observed frequencies corresponding to \(X = 0 , X = 1\) and \(X = 2\) are given in the following table.
\(x\)012
Observed
frequency
\(N - 1\)\(N - 1\)\(N + 2\)
The test statistic for a chi-squared goodness of fit test for the data is 0.3 . Find the value of \(N\).
OCR FS1 AS 2017 Specimen Q8
53 marks
8 The following table gives the mean per capita consumption of mozzarella cheese per annum, \(x\) pounds, and the number of civil engineering doctorates awarded, \(y\), in the United States in each of 10 years. \section*{2. Subject-specific Marking Instructions for AS Level Further Mathematics A} Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km , when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for \(g\). E marks will be lost except when results agree to the accuracy required in the question. Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader. If in any case the scheme operates with considerable unfairness consult your Team Leader. \end{table} PS = Problem Solving
M = Modelling \section*{Summary of Updates}
5(i)(a)
5(i)(b)
5(i)(c)
5(ii)
\multirow[t]{8}{*}{6(i)}
\multirow[t]{10}{*}{6(ii)}
6 (iii)(a)
6 (iii)(b)
6 (iv)
\multirow[t]{25}{*}{
8
(iii)(a)
}
8(iii)(b)
\section*{PLEASE DO NOT WRITE ON THIS PAGE}