Questions — OCR C4 (310 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C4 2008 January Q9
9 The parametric equations of a curve are \(x = t ^ { 3 } , y = t ^ { 2 }\).
  1. Show that the equation of the tangent at the point \(P\) where \(t = p\) is $$3 p y - 2 x = p ^ { 3 } .$$
  2. Given that this tangent passes through the point ( \(- 10,7\) ), find the coordinates of each of the three possible positions of \(P\).
OCR C4 2008 January Q10
10
  1. Use the substitution \(x = \sin \theta\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x$$
  2. Find the exact value of $$\int _ { 1 } ^ { 3 } \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x$$ 4
OCR C4 2005 June Q1
1 Find the quotient and the remainder when \(x ^ { 4 } + 3 x ^ { 3 } + 5 x ^ { 2 } + 4 x - 1\) is divided by \(x ^ { 2 } + x + 1\).
OCR C4 2005 June Q2
2 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \cos x \mathrm {~d} x\), giving your answer in an exact form.
OCR C4 2005 June Q3
3 The line \(L _ { 1 }\) passes through the points \(( 2 , - 3,1 )\) and \(( - 1 , - 2 , - 4 )\). The line \(L _ { 2 }\) passes through the point ( \(3,2 , - 9\) ) and is parallel to the vector \(4 \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k }\).
  1. Find an equation for \(L _ { 1 }\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\).
  2. Prove that \(L _ { 1 }\) and \(L _ { 2 }\) are skew.
OCR C4 2005 June Q4
4
  1. Show that the substitution \(x = \tan \theta\) transforms \(\int \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x\) to \(\int \cos ^ { 2 } \theta \mathrm {~d} \theta\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x\).
    \(5 A B C D\) is a parallelogram. The position vectors of \(A , B\) and \(C\) are given respectively by $$\mathbf { a } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad \mathbf { b } = 3 \mathbf { i } - 2 \mathbf { j } , \quad \mathbf { c } = \mathbf { i } - \mathbf { j } - 2 \mathbf { k } .$$
  3. Find the position vector of \(D\).
  4. Determine, to the nearest degree, the angle \(A B C\).
OCR C4 2005 June Q6
6 The equation of a curve is \(x y ^ { 2 } = 2 x + 3 y\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 - y ^ { 2 } } { 2 x y - 3 }\).
  2. Show that the curve has no tangents which are parallel to the \(y\)-axis.
OCR C4 2005 June Q7
7 A curve is given parametrically by the equations $$x = t ^ { 2 } , \quad y = \frac { 1 } { t }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), giving your answer in its simplest form.
  2. Show that the equation of the tangent at the point \(P \left( 4 , - \frac { 1 } { 2 } \right)\) is $$x - 16 y = 12$$
  3. Find the value of the parameter at the point where the tangent at \(P\) meets the curve again.
OCR C4 2005 June Q8
8
  1. Given that \(\frac { 3 x + 4 } { ( 1 + x ) ( 2 + x ) ^ { 2 } } \equiv \frac { A } { 1 + x } + \frac { B } { 2 + x } + \frac { C } { ( 2 + x ) ^ { 2 } }\), find \(A , B\) and \(C\).
  2. Hence or otherwise expand \(\frac { 3 x + 4 } { ( 1 + x ) ( 2 + x ) ^ { 2 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
  3. State the set of values of \(x\) for which the expansion in part (ii) is valid.
OCR C4 2005 June Q9
9 Newton's law of cooling states that the rate at which the temperature of an object is falling at any instant is proportional to the difference between the temperature of the object and the temperature of its surroundings at that instant. A container of hot liquid is placed in a room which has a constant temperature of \(20 ^ { \circ } \mathrm { C }\). At time \(t\) minutes later, the temperature of the liquid is \(\theta ^ { \circ } \mathrm { C }\).
  1. Explain how the information above leads to the differential equation $$\frac { \mathrm { d } \theta } { \mathrm {~d} t } = - k ( \theta - 20 ) ,$$ where \(k\) is a positive constant.
  2. The liquid is initially at a temperature of \(100 ^ { \circ } \mathrm { C }\). It takes 5 minutes for the liquid to cool from \(100 ^ { \circ } \mathrm { C }\) to \(68 ^ { \circ } \mathrm { C }\). Show that $$\theta = 20 + 80 \mathrm { e } ^ { - \left( \frac { 1 } { 5 } \ln \frac { 5 } { 3 } \right) t }$$
  3. Calculate how much longer it takes for the liquid to cool by a further \(32 ^ { \circ } \mathrm { C }\).
OCR C4 2006 June Q1
1 Find the gradient of the curve \(4 x ^ { 2 } + 2 x y + y ^ { 2 } = 12\) at the point \(( 1,2 )\).
OCR C4 2006 June Q2
2
  1. Expand \(( 1 - 3 x ) ^ { - 2 }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
  2. Find the coefficient of \(x ^ { 2 }\) in the expansion of \(\frac { ( 1 + 2 x ) ^ { 2 } } { ( 1 - 3 x ) ^ { 2 } }\) in ascending powers of \(x\).
OCR C4 2006 June Q3
3
  1. Express \(\frac { 3 - 2 x } { x ( 3 - x ) }\) in partial fractions.
  2. Show that \(\int _ { 1 } ^ { 2 } \frac { 3 - 2 x } { x ( 3 - x ) } \mathrm { d } x = 0\).
  3. What does the result of part (ii) indicate about the graph of \(y = \frac { 3 - 2 x } { x ( 3 - x ) }\) between \(x = 1\) and \(x = 2\) ?
OCR C4 2006 June Q4
4 The position vectors of three points \(A , B\) and \(C\) relative to an origin \(O\) are given respectively by and $$\begin{aligned} & \overrightarrow { O A } = 7 \mathbf { i } + 3 \mathbf { j } - 3 \mathbf { k }
& \overrightarrow { O B } = 4 \mathbf { i } + 2 \mathbf { j } - 4 \mathbf { k }
& \overrightarrow { O C } = 5 \mathbf { i } + 4 \mathbf { j } - 5 \mathbf { k } \end{aligned}$$
  1. Find the angle between \(A B\) and \(A C\).
  2. Find the area of triangle \(A B C\).
OCR C4 2006 June Q5
5 A forest is burning so that, \(t\) hours after the start of the fire, the area burnt is \(A\) hectares. It is given that, at any instant, the rate at which this area is increasing is proportional to \(A ^ { 2 }\).
  1. Write down a differential equation which models this situation.
  2. After 1 hour, 1000 hectares have been burnt; after 2 hours, 2000 hectares have been burnt. Find after how many hours 3000 hectares have been burnt.
  3. Show that the substitution \(u = \mathrm { e } ^ { x } + 1\) transforms \(\int \frac { \mathrm { e } ^ { 2 x } } { \mathrm { e } ^ { x } + 1 } \mathrm {~d} x\) to \(\int \frac { u - 1 } { u } \mathrm {~d} u\).
  4. Hence show that \(\int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { 2 x } } { \mathrm { e } ^ { x } + 1 } \mathrm {~d} x = \mathrm { e } - 1 - \ln \left( \frac { \mathrm { e } + 1 } { 2 } \right)\).
OCR C4 2006 June Q7
7 Two lines have vector equations $$\mathbf { r } = \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } + \lambda ( 3 \mathbf { i } + \mathbf { j } + a \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 8 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \mu ( \mathbf { i } - 2 \mathbf { j } - \mathbf { k } ) ,$$ where \(a\) is a constant.
  1. Given that the lines are skew, find the value that \(a\) cannot take.
  2. Given instead that the lines intersect, find the point of intersection.
OCR C4 2006 June Q8
8
  1. Show that \(\int \cos ^ { 2 } 6 x \mathrm {~d} x = \frac { 1 } { 2 } x + \frac { 1 } { 24 } \sin 12 x + c\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 12 } \pi } x \cos ^ { 2 } 6 x \mathrm {~d} x\).
OCR C4 2006 June Q9
9 A curve is given parametrically by the equations $$x = 4 \cos t , \quad y = 3 \sin t$$ where \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Show that the equation of the tangent at the point \(P\), where \(t = p\), is $$3 x \cos p + 4 y \sin p = 12$$
  3. The tangent at \(P\) meets the \(x\)-axis at \(R\) and the \(y\)-axis at \(S . O\) is the origin. Show that the area of triangle \(O R S\) is \(\frac { 12 } { \sin 2 p }\).
  4. Write down the least possible value of the area of triangle \(O R S\), and give the corresponding value of \(p\).
OCR C4 2007 June Q1
1 The equation of a curve is \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 3 x + 1 } { ( x + 2 ) ( x - 3 ) }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence find \(\mathrm { f } ^ { \prime } ( x )\) and deduce that the gradient of the curve is negative at all points on the curve.
OCR C4 2007 June Q2
2 Find the exact value of \(\int _ { 0 } ^ { 1 } x ^ { 2 } \mathrm { e } ^ { x } \mathrm {~d} x\).
OCR C4 2007 June Q3
3 Find the exact volume generated when the region enclosed between the \(x\)-axis and the portion of the curve \(y = \sin x\) between \(x = 0\) and \(x = \pi\) is rotated completely about the \(x\)-axis.
OCR C4 2007 June Q4
4
  1. Expand \(( 2 + x ) ^ { - 2 }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), and state the set of values of \(x\) for which the expansion is valid.
  2. Hence find the coefficient of \(x ^ { 3 }\) in the expansion of \(\frac { 1 + x ^ { 2 } } { ( 2 + x ) ^ { 2 } }\).
OCR C4 2007 June Q5
5 A curve \(C\) has parametric equations $$x = \cos t , \quad y = 3 + 2 \cos 2 t , \quad \text { where } 0 \leqslant t \leqslant \pi$$
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\) and hence show that the gradient at any point on \(C\) cannot exceed 8 .
  2. Show that all points on \(C\) satisfy the cartesian equation \(y = 4 x ^ { 2 } + 1\).
  3. Sketch the curve \(y = 4 x ^ { 2 } + 1\) and indicate on your sketch the part which represents \(C\).
OCR C4 2007 June Q6
6 The equation of a curve is \(x ^ { 2 } + 3 x y + 4 y ^ { 2 } = 58\). Find the equation of the normal at the point \(( 2,3 )\) on the curve, giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR C4 2007 June Q7
7
  1. Find the quotient and the remainder when \(2 x ^ { 3 } + 3 x ^ { 2 } + 9 x + 12\) is divided by \(x ^ { 2 } + 4\).
  2. Hence express \(\frac { 2 x ^ { 3 } + 3 x ^ { 2 } + 9 x + 12 } { x ^ { 2 } + 4 }\) in the form \(A x + B + \frac { C x + D } { x ^ { 2 } + 4 }\), where the values of the constants \(A , B , C\) and \(D\) are to be stated.
  3. Use the result of part (ii) to find the exact value of \(\int _ { 1 } ^ { 3 } \frac { 2 x ^ { 3 } + 3 x ^ { 2 } + 9 x + 12 } { x ^ { 2 } + 4 } \mathrm {~d} x\).