OCR C4 2007 June — Question 5

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
Year2007
SessionJune
TopicParametric equations

5 A curve \(C\) has parametric equations $$x = \cos t , \quad y = 3 + 2 \cos 2 t , \quad \text { where } 0 \leqslant t \leqslant \pi$$
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\) and hence show that the gradient at any point on \(C\) cannot exceed 8 .
  2. Show that all points on \(C\) satisfy the cartesian equation \(y = 4 x ^ { 2 } + 1\).
  3. Sketch the curve \(y = 4 x ^ { 2 } + 1\) and indicate on your sketch the part which represents \(C\).