Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C4 2010 June Q1
8 marks Moderate -0.3
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{280ae2a5-7344-4ba3-907f-235fba3fd5b3-02_684_767_274_589} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = \sqrt { } \left( 0.75 + \cos ^ { 2 } x \right)\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(y\)-axis, the \(x\)-axis and the line with equation \(x = \frac { \pi } { 3 }\).
  1. Complete the table with values of \(y\) corresponding to \(x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 4 }\).
    \(x\)0\(\frac { \pi } { 12 }\)\(\frac { \pi } { 6 }\)\(\frac { \pi } { 4 }\)\(\frac { \pi } { 3 }\)
    \(y\)1.32291.29731
  2. Use the trapezium rule
    1. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 6 }\) and \(x = \frac { \pi } { 3 }\) to find an estimate of the area of \(R\). Give your answer to 3 decimal places.
    2. with the values of \(y\) at \(x = 0 , x = \frac { \pi } { 12 } , x = \frac { \pi } { 6 } , x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 3 }\) to find a further estimate of the area of \(R\). Give your answer to 3 decimal places.
      (6) \section*{LU}
Edexcel C4 2010 June Q2
6 marks
2. Using the substitution \(u = \cos x + 1\), or otherwise, show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { \cos x + 1 } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$ (6)
Edexcel C4 2010 June Q3
7 marks Standard +0.3
3. A curve \(C\) has equation $$2 ^ { x } + y ^ { 2 } = 2 x y$$ Find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point on \(C\) with coordinates \(( 3,2 )\).
Edexcel C4 2010 June Q4
10 marks Standard +0.3
4. A curve \(C\) has parametric equations $$x = \sin ^ { 2 } t , \quad y = 2 \tan t , \quad 0 \leqslant t < \frac { \pi } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). The tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) cuts the \(x\)-axis at the point \(P\).
  2. Find the \(x\)-coordinate of \(P\).
    \section*{LU}
Edexcel C4 2010 June Q5
11 marks Standard +0.3
5. $$\frac { 2 x ^ { 2 } + 5 x - 10 } { ( x - 1 ) ( x + 2 ) } \equiv A + \frac { B } { x - 1 } + \frac { C } { x + 2 }$$
  1. Find the values of the constants \(A , B\) and \(C\).
  2. Hence, or otherwise, expand \(\frac { 2 x ^ { 2 } + 5 x - 10 } { ( x - 1 ) ( x + 2 ) }\) in ascending powers of \(x\), as far as the term in \(x ^ { 2 }\). Give each coefficient as a simplified fraction.
Edexcel C4 2010 June Q6
10 marks Standard +0.3
6. $$f ( \theta ) = 4 \cos ^ { 2 } \theta - 3 \sin ^ { 2 } \theta$$
  1. Show that \(f ( \theta ) = \frac { 1 } { 2 } + \frac { 7 } { 2 } \cos 2 \theta\).
  2. Hence, using calculus, find the exact value of \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \theta \mathrm { f } ( \theta ) \mathrm { d } \theta\).
Edexcel C4 2010 June Q7
12 marks Standard +0.3
7. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 4 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right)\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 0 \\ 9 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { l } 5 \\ 0 \\ 2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(C\), find
  1. the coordinates of \(C\). The point \(A\) is the point on \(l _ { 1 }\) where \(\lambda = 0\) and the point \(B\) is the point on \(l _ { 2 }\) where \(\mu = - 1\).
  2. Find the size of the angle \(A C B\). Give your answer in degrees to 2 decimal places.
  3. Hence, or otherwise, find the area of the triangle \(A B C\).
Edexcel C4 2010 June Q8
11 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{280ae2a5-7344-4ba3-907f-235fba3fd5b3-12_474_837_283_610} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m . Water is flowing into the tank at a constant rate of \(0.48 \pi \mathrm {~m} ^ { 3 } \mathrm {~min} ^ { - 1 }\). At time \(t\) minutes, the depth of the water in the tank is \(h\) metres. There is a tap at a point \(T\) at the bottom of the tank. When the tap is open, water leaves the tank at a rate of \(0.6 \pi h \mathrm {~m} ^ { 3 } \mathrm {~min} ^ { - 1 }\).
  1. Show that \(t\) minutes after the tap has been opened $$75 \frac { \mathrm {~d} h } { \mathrm {~d} t } = ( 4 - 5 h )$$ When \(t = 0 , h = 0.2\)
  2. Find the value of \(t\) when \(h = 0.5\)
Edexcel C4 2011 June Q1
4 marks Moderate -0.8
1. $$\frac { 9 x ^ { 2 } } { ( x - 1 ) ^ { 2 } ( 2 x + 1 ) } = \frac { A } { ( x - 1 ) } + \frac { B } { ( x - 1 ) ^ { 2 } } + \frac { C } { ( 2 x + 1 ) }$$ Find the values of the constants \(A , B\) and \(C\).
Edexcel C4 2011 June Q2
6 marks Standard +0.3
2. $$f ( x ) = \frac { 1 } { \sqrt { } \left( 9 + 4 x ^ { 2 } \right) } , \quad | x | < \frac { 3 } { 2 }$$ Find the first three non-zero terms of the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\). Give each coefficient as a simplified fraction.
Edexcel C4 2011 June Q3
6 marks Standard +0.3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-04_391_741_274_605} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is \(h \mathrm {~m}\), the volume \(V \mathrm {~m} ^ { 3 }\) is given by $$V = \frac { 1 } { 12 } \pi \cdot h ^ { 2 } ( 3 - 4 h ) , \quad 0 \leqslant h \leqslant 0.25$$
  1. Find, in terms of \(\pi , \frac { \mathrm { d } V } { \mathrm {~d} h }\) when \(h = 0.1\) Water flows into the bowl at a rate of \(\frac { \pi } { 800 } \mathrm {~m} ^ { 3 } \mathrm {~s} ^ { - 1 }\).
  2. Find the rate of change of \(h\), in \(\mathrm { m } \mathrm { s } ^ { - 1 }\), when \(h = 0.1\)
Edexcel C4 2011 June Q4
15 marks Standard +0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-05_673_1058_264_443} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = x ^ { 3 } \ln \left( x ^ { 2 } + 2 \right) , x \geqslant 0\).
The finite region \(R\), shown shaded in Figure 2, is bounded by the curve, the \(x\)-axis and the line \(x = \sqrt { } 2\). The table below shows corresponding values of \(x\) and \(y\) for \(y = x ^ { 3 } \ln \left( x ^ { 2 } + 2 \right)\).
\(x\)0\(\frac { \sqrt { } 2 } { 4 }\)\(\frac { \sqrt { } 2 } { 2 }\)\(\frac { 3 \sqrt { } 2 } { 4 }\)\(\sqrt { } 2\)
\(y\)00.32403.9210
  1. Complete the table above giving the missing values of \(y\) to 4 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 2 decimal places.
  3. Use the substitution \(u = x ^ { 2 } + 2\) to show that the area of \(R\) is $$\frac { 1 } { 2 } \int _ { 2 } ^ { 4 } ( u - 2 ) \ln u \mathrm {~d} u$$
  4. Hence, or otherwise, find the exact area of \(R\).
Edexcel C4 2011 June Q5
7 marks Moderate -0.3
  1. Find the gradient of the curve with equation
$$\ln y = 2 x \ln x , \quad x > 0 , y > 0$$ at the point on the curve where \(x = 2\). Give your answer as an exact value.
Edexcel C4 2011 June Q6
14 marks Standard +0.3
6. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { r } 6
- 3
- 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
2
3 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 5
Edexcel C4 2011 June Q7
15 marks Challenging +1.2
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-10_643_999_276_475} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { } 3 , \frac { 1 } { 2 } \sqrt { } 3 \right)\).
  1. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  2. Show that \(Q\) has coordinates \(( k \sqrt { } 3,0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { } 3\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { } 3 + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants.
Edexcel C4 2011 June Q15
Standard +0.3
15
3 \end{array} \right) + \mu \left( \begin{array} { r } 2
- 3
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection \(A\).
  2. Find, to the nearest \(0.1 ^ { \circ }\), the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\). The point \(B\) has position vector \(\left( \begin{array} { r } 5 \\ - 1 \\ 1 \end{array} \right)\).
  3. Show that \(B\) lies on \(l _ { 1 }\).
  4. Find the shortest distance from \(B\) to the line \(l _ { 2 }\), giving your answer to 3 significant figures.\\ 7. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9d513d77-b8f9-4223-832f-f566c5f50457-10_643_999_276_475} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { } 3 , \frac { 1 } { 2 } \sqrt { } 3 \right)\).
  5. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  6. Show that \(Q\) has coordinates \(( k \sqrt { } 3,0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { } 3\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  7. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { } 3 + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants. 8. (a) Find \(\int ( 4 y + 3 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} y\)
  8. Given that \(y = 1.5\) at \(x = - 2\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \sqrt { } ( 4 y + 3 ) } { x ^ { 2 } }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel C4 2012 June Q1
10 marks Standard +0.3
1. $$\mathrm { f } ( x ) = \frac { 1 } { x ( 3 x - 1 ) ^ { 2 } } = \frac { A } { x } + \frac { B } { ( 3 x - 1 ) } + \frac { C } { ( 3 x - 1 ) ^ { 2 } }$$
  1. Find the values of the constants \(A , B\) and \(C\).
    1. Hence find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
    2. Find \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\), leaving your answer in the form \(a + \ln b\), where \(a\) and \(b\) are constants. 1 \(f ( x ) = \frac { 1 } { x ( 3 x - 1 ) ^ { 2 } } = \frac { A } { x } + \frac { } { ( 3 x }\)
  2. Find the values of the constants \(A , B\) and \(C\).
Edexcel C4 2012 June Q2
6 marks Moderate -0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12fbfe89-60fe-4890-9a22-2b1988d05d33-03_424_465_228_721} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a metal cube which is expanding uniformly as it is heated. At time \(t\) seconds, the length of each edge of the cube is \(x \mathrm {~cm}\), and the volume of the cube is \(V \mathrm {~cm} ^ { 3 }\).
  1. Show that \(\frac { \mathrm { d } V } { \mathrm {~d} x } = 3 x ^ { 2 }\) Given that the volume, \(V \mathrm {~cm} ^ { 3 }\), increases at a constant rate of \(0.048 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\),
  2. find \(\frac { \mathrm { d } x } { \mathrm {~d} t }\), when \(x = 8\)
  3. find the rate of increase of the total surface area of the cube, in \(\mathrm { cm } ^ { 2 } \mathrm {~s} ^ { - 1 }\), when \(x = 8\)
Edexcel C4 2012 June Q3
9 marks Standard +0.3
3. $$f ( x ) = \frac { 6 } { \sqrt { ( 9 - 4 x ) } } , \quad | x | < \frac { 9 } { 4 }$$
  1. Find the binomial expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient in its simplest form.
    (6) Use your answer to part (a) to find the binomial expansion in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), of
  2. \(\quad \mathrm { g } ( x ) = \frac { 6 } { \sqrt { } ( 9 + 4 x ) } , \quad | x | < \frac { 9 } { 4 }\)
  3. \(\mathrm { h } ( x ) = \frac { 6 } { \sqrt { } ( 9 - 8 x ) } , \quad | x | < \frac { 9 } { 8 }\)
Edexcel C4 2012 June Q4
5 marks Moderate -0.3
  1. Given that \(y = 2\) at \(x = \frac { \pi } { 4 }\), solve the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { y \cos ^ { 2 } x }$$
Edexcel C4 2012 June Q5
12 marks Standard +0.3
  1. The curve \(C\) has equation
$$16 y ^ { 3 } + 9 x ^ { 2 } y - 54 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
Edexcel C4 2012 June Q6
12 marks Moderate -0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12fbfe89-60fe-4890-9a22-2b1988d05d33-09_831_784_127_580} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = ( \sqrt { } 3 ) \sin 2 t , \quad y = 4 \cos ^ { 2 } t , \quad 0 \leqslant t \leqslant \pi$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k ( \sqrt { } 3 ) \tan 2 t\), where \(k\) is a constant to be determined.
  2. Find an equation of the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\). Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
  3. Find a cartesian equation of \(C\).
Edexcel C4 2012 June Q7
11 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12fbfe89-60fe-4890-9a22-2b1988d05d33-11_754_1177_217_388} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = x ^ { \frac { 1 } { 2 } } \ln 2 x\).
The finite region \(R\), shown shaded in Figure 3, is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 4\)
  1. Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of \(R\), giving your answer to 2 decimal places.
  2. Find \(\int x ^ { \frac { 1 } { 2 } } \ln 2 x \mathrm {~d} x\).
  3. Hence find the exact area of \(R\), giving your answer in the form \(a \ln 2 + b\), where \(a\) and \(b\) are exact constants.
Edexcel C4 2012 June Q8
10 marks Standard +0.3
  1. Relative to a fixed origin \(O\), the point \(A\) has position vector \(( 10 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } )\), and the point \(B\) has position vector \(( 8 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } )\).
The line \(l\) passes through the points \(A\) and \(B\).
  1. Find the vector \(\overrightarrow { A B }\).
  2. Find a vector equation for the line \(l\). The point \(C\) has position vector \(( 3 \mathbf { i } + 12 \mathbf { j } + 3 \mathbf { k } )\).
    The point \(P\) lies on \(l\). Given that the vector \(\overrightarrow { C P }\) is perpendicular to \(l\),
  3. find the position vector of the point \(P\).
Edexcel C4 2013 June Q1
4 marks Moderate -0.3
  1. Express in partial fractions
$$\frac { 5 x + 3 } { ( 2 x + 1 ) ( x + 1 ) ^ { 2 } }$$