Edexcel C4 2012 June — Question 2

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2012
SessionJune
TopicNon-constant acceleration

2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12fbfe89-60fe-4890-9a22-2b1988d05d33-03_424_465_228_721} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a metal cube which is expanding uniformly as it is heated. At time \(t\) seconds, the length of each edge of the cube is \(x \mathrm {~cm}\), and the volume of the cube is \(V \mathrm {~cm} ^ { 3 }\).
  1. Show that \(\frac { \mathrm { d } V } { \mathrm {~d} x } = 3 x ^ { 2 }\) Given that the volume, \(V \mathrm {~cm} ^ { 3 }\), increases at a constant rate of \(0.048 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\),
  2. find \(\frac { \mathrm { d } x } { \mathrm {~d} t }\), when \(x = 8\)
  3. find the rate of increase of the total surface area of the cube, in \(\mathrm { cm } ^ { 2 } \mathrm {~s} ^ { - 1 }\), when \(x = 8\)