Questions — Edexcel (9670 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 Q15
15. (a) Find the value of \(\lambda\) for which \(\lambda x \cos 3 x\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 y = - 12 \sin 3 x$$ (b) Hence find the general solution of this differential equation. The particular solution of the differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\) at \(x = 0\), is \(y = \mathrm { g } ( x )\).
(c) Find \(\mathrm { g } ( x )\).
(d) Sketch the graph of \(y = \mathrm { g } ( x ) , 0 \leq x \leq \pi\).
[0pt] [P4 January 2003 Qn 7]
Edexcel FP2 Q16
16. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{858e6727-8498-462a-8064-d65254f1fd0f-08_478_938_283_502} Figure 1 shows a sketch of the cardioid \(C\) with equation \(r = a ( 1 + \cos \theta ) , - \pi < \theta \leq \pi\). Also shown are the tangents to \(C\) that are parallel and perpendicular to the initial line. These tangents form a rectangle \(W X Y Z\).
  1. Find the area of the finite region, shaded in Fig. 1, bounded by the curve \(C\).
  2. Find the polar coordinates of the points \(A\) and \(B\) where \(W Z\) touches the curve \(C\).
  3. Hence find the length of \(W X\). Given that the length of \(W Z\) is \(\frac { 3 \sqrt { 3 } a } { 2 }\),
  4. find the area of the rectangle \(W X Y Z\).
    (1) A heart-shape is modelled by the cardioid \(C\), where \(a = 10 \mathrm {~cm}\). The heart shape is cut from the rectangular card \(W X Y Z\), shown in Fig. 1.
  5. Find a numerical value for the area of card wasted in making this heart shape.
    (2)
    [0pt] [P4 January 2003 Qn 8]
Edexcel FP2 Q17
17. (a) Express as a simplified fraction \(\frac { 1 } { ( r - 1 ) ^ { 2 } } - \frac { 1 } { r ^ { 2 } }\).
(2)
(b) Prove, by the method of differences, that $$\sum _ { r = 2 } ^ { n } \frac { 2 r - 1 } { r ^ { 2 } ( r - 1 ) ^ { 2 } } = 1 - \frac { 1 } { n ^ { 2 } }$$ [P4 June 2003 Qn 1]
Edexcel FP2 Q18
18. Solve the inequality \(\frac { 1 } { 2 x + 1 } > \frac { x } { 3 x - 2 }\).
Edexcel FP2 Q19
19. (a) Using the substitution \(t = x ^ { 2 }\), or otherwise, find $$\int x ^ { 3 } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x$$ (b) Find the general solution of the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = x \mathrm { e } ^ { - x ^ { 2 } } , \quad x > 0$$ [P4 June 2003 Qn 6] \section*{20.} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{858e6727-8498-462a-8064-d65254f1fd0f-10_575_1500_319_317}
\end{figure} A logo is designed which consists of two overlapping closed curves.
The polar equations of these curves are $$\begin{aligned} & r = a ( 3 + 2 \cos \theta ) \quad \text { and }
& r = a ( 5 - 2 \cos \theta ) , \quad 0 \leq \theta < 2 \pi \end{aligned}$$ Figure 1 is a sketch (not to scale) of these two curves.
(a) Write down the polar coordinates of the points \(A\) and \(B\) where the curves meet the initial line.
(b) Find the polar coordinates of the points \(C\) and \(D\) where the two curves meet.
(c) Show that the area of the overlapping region, which is shaded in the figure, is $$\frac { a ^ { 2 } } { 3 } ( 49 \pi - 48 \sqrt { } 3 ) .$$ 21. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 9 y = 4 \mathrm { e } ^ { 3 t } , \quad t \geq 0$$ (a) Show that \(K t ^ { 2 } \mathrm { e } ^ { 3 t }\) is a particular integral of the differential equation, where \(K\) is a constant to be found.
(b) Find the general solution of the differential equation. Given that a particular solution satisfies \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(t = 0\),
(c) find this solution. Another particular solution which satisfies \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 0\) when \(t = 0\), has equation $$y = \left( 1 - 3 t + 2 t ^ { 2 } \right) \mathrm { e } ^ { 3 t }$$ (d) For this particular solution draw a sketch graph of \(y\) against \(t\), showing where the graph crosses the \(t\)-axis. Determine also the coordinates of the minimum of the point on the sketch graph.
[0pt] [P4 June 2003 Qn 8]
22. (i) (a) On the same Argand diagram sketch the loci given by the following equations. $$\begin{aligned} & | z - 1 | = 1
& \arg ( z + 1 ) = \frac { \pi } { 12 }
& \arg ( z + 1 ) = \frac { \pi } { 2 } \end{aligned}$$ (b) Shade on your diagram the region for which $$| z - 1 | \leq 1 \quad \text { and } \quad \frac { \pi } { 12 } \leq \arg ( z + 1 ) \leq \frac { \pi } { 2 }$$ (ii) (a) Show that the transformation $$w = \frac { z - 1 } { z } , \quad z \neq 0$$ maps \(| z - 1 | = 1\) in the \(z\)-plane onto \(| w | = | w - 1 |\) in the \(w\)-plane. The region \(| z - 1 | \leq 1\) in the \(z\)-plane is mapped onto the region \(T\) in the \(w\)-plane.
(b) Shade the region \(T\) on an Argand diagram.
(2)
[0pt] [P6 June 2003 Qn 4]
23. (a) Use de Moivre's theorem to show that $$\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta$$ (b) Hence find 3 distinct solutions of the equation \(16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + 1 = 0\), giving your answers to 3 decimal places where appropriate.
[0pt] [P6 June 2003 Qn 5]
24. Prove by the method of differences that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 ) , n > 1\).
(6)
[0pt] [P4 January 2004 Qn 1]
25. $$\frac { \mathrm { d } y } { \mathrm {~d} x } + y \left( 1 + \frac { 3 } { x } \right) = \frac { 1 } { x ^ { 2 } } , \quad x > 0 .$$ (a) Verify that \(x ^ { 3 } \mathrm { e } ^ { x }\) is an integrating factor for the differential equation.
(b) Find the general solution of the differential equation.
(c) Given that \(y = 1\) at \(x = 1\), find \(y\) at \(x = 2\).
[0pt] [P4 January 2004 Qn 4]
26. (a) Sketch, on the same axes, the graph of \(y = | ( x - 2 ) ( x - 4 ) |\), and the line with equation \(y = 6 - 2 x\).
(b) Find the exact values of \(x\) for which \(| ( x - 2 ) ( x - 4 ) | = 6 - 2 x\).
(c) Hence solve the inequality \(| ( x - 2 ) ( x - 4 ) | < 6 - 2 x\).
[0pt] [P4 January 2004 Qn 5]
27. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 65 \sin 2 x , x > 0$$ (a) Find the general solution of the differential equation.
(9)
(b) Show that for large values of \(x\) this general solution may be approximated by a sine function and find this sine function.
[0pt] [P4 January 2004 Qn 6]
28. (a) Sketch the curve with polar equation $$r = 3 \cos 2 \theta , \quad - \frac { \pi } { 4 } \leq \theta < \frac { \pi } { 4 }$$ (b) Find the area of the smaller finite region enclosed between the curve and the half-line \(\theta = \frac { \pi } { 6 }\).
(c) Find the exact distance between the two tangents which are parallel to the initial line.
(8)
[0pt] [P4 January 2004 Qn 7]
29. Find the complete set of values of \(x\) for which $$\left| x ^ { 2 } - 2 \right| > 2 x$$ [P4 June 2004 Qn 4]
30. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y = x$$ Given that \(y = 1\) at \(x = 0\),
(b) find the exact values of the coordinates of the minimum point of the particular solution curve,
(c) draw a sketch of this particular solution curve.
[0pt] [P4 June 2004 Qn 6]
31. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 2 y = 2 \mathrm { e } ^ { - t }$$ (b) Find the particular solution that satisfies \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) at \(t = 0\).
(6)
[0pt] [P4 June 2004 Qn 7]
32. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{858e6727-8498-462a-8064-d65254f1fd0f-16_528_1191_338_411} Figure 1 is a sketch of the two curves \(C _ { 1 }\) and \(C _ { 2 }\) with polar equations
and $$\begin{array} { l l } C _ { 1 } : r = 3 a ( 1 - \cos \theta ) , & - \pi \leq \theta < \pi
C _ { 2 } : r = a ( 1 + \cos \theta ) , & - \pi \leq \theta < \pi \end{array}$$ The curves meet at the pole \(O\), and at the points \(A\) and \(B\).
(a) Find, in terms of \(a\), the polar coordinates of the points \(A\) and \(B\).
(b) Show that the length of the line \(A B\) is \(\frac { 3 \sqrt { } 3 } { 2 } a\). The region inside \(C _ { 2 }\) and outside \(C _ { 1 }\) is shown shaded in Fig. 1.
(c) Find, in terms of \(a\), the area of this region. A badge is designed which has the shape of the shaded region.
Given that the length of the line \(A B\) is 4.5 cm ,
(d) calculate the area of this badge, giving your answer to three significant figures.
33. Given that \(y = \tan x\),
(a) find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
(3)
(b) Find the Taylor series expansion of tan \(x\) in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 3 }\).
(3)
(c) Hence show that \(\tan \frac { 3 \pi } { 10 } \approx 1 + \frac { \pi } { 10 } + \frac { \pi ^ { 2 } } { 200 } + \frac { \pi ^ { 3 } } { 3000 }\).
(2)
[0pt] [P6 June 2004 Qn 2]
34. (a) Prove by induction that $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \cos x \right) = 2 ^ { \frac { 1 } { 2 } n } \mathrm { e } ^ { x } \cos \left( x + \frac { 1 } { 4 } n \pi \right) , \quad n \geq 1$$ (b) Find the Maclaurin series expansion of \(\mathrm { e } ^ { x } \cos x\), in ascending powers of \(x\), up to and including the term in \(x ^ { 4 }\).
[0pt] [P6 June 2004 Qn 4]
35. The transformation \(T\) from the complex \(z\)-plane to the complex \(w\)-plane is given by $$w = \frac { z + 1 } { z + \mathrm { i } } , \quad z \neq - \mathrm { i }$$ (a) Show that \(T\) maps points on the half-line \(\arg ( z ) = \frac { \pi } { 4 }\) in the \(z\)-plane into points on the \(\stackrel { \text { circle } } { | w | } = 1\) in the \(w\)-plane.
(b) Find the image under \(T\) in the \(w\)-plane of the circle \(| z | = 1\) in the \(z\)-plane.
(6)
(c) Sketch on separate diagrams the circle \(| z | = 1\) in the \(z\)-plane and its image under \(T\) in the \(w\)-plane.
(d) Mark on your sketches the point \(P\), where \(z = \mathrm { i }\), and its image \(Q\) under \(T\) in the \(w\)-plane.
[0pt] [P6 June 2004 Qn 7]
36. (a) Sketch the graph of \(y = | x - 2 a |\), given that \(a > 0\).
(b) Solve \(| x - 2 a | > 2 x + a\), where \(a > 0\).
37. Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y \cot 2 x = \sin x , \quad 0 < x < \frac { \pi } { 2 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
[0pt] [FP1/P4 January 2005 Qn 3]
38. (a) Express \(\frac { 1 } { r ( r + 2 ) }\) in partial fractions.
(2)
(b) Hence prove, by the method of differences, that $$\sum _ { r = 1 } ^ { n } \frac { 4 } { r ( r + 2 ) } = \frac { n ( 3 n + 5 ) } { ( n + 1 ) ( n + 2 ) }$$ (c) Find the value of \(\sum _ { r = 50 } ^ { 100 } \frac { 4 } { r ( r + 2 ) }\), to 4 decimal places.
(3)
[0pt] [FP1/P4 January 2005 Qn 5]
39. (a) Show that the transformation \(y = x v\) transforms the equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 2 + 9 x ^ { 2 } \right) y = x ^ { 5 }$$ into the equation $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 9 v = x ^ { 2 }$$ (b) Solve the differential equation II to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation I.
[0pt] [FP1/P4 January 2005 Qn 6]
40. The curve \(C\) has polar equation \(\quad r = 6 \cos \theta , \quad - \frac { \pi } { 2 } \leq \theta < \frac { \pi } { 2 }\), and the line \(D\) has polar equation \(\quad r = 3 \sec \left( \frac { \pi } { 3 } - \theta \right) , \quad - \frac { \pi } { 6 } \leq \theta < \frac { 5 \pi } { 6 }\).
(a) Find a cartesian equation of \(C\) and a cartesian equation of \(D\).
(b) Sketch on the same diagram the graphs of \(C\) and \(D\), indicating where each cuts the initial line. The graphs of \(C\) and \(D\) intersect at the points \(P\) and \(Q\).
(c) Find the polar coordinates of \(P\) and \(Q\).
41. (a) By expressing \(\frac { 2 } { 4 r ^ { 2 } - 1 }\) in partial fractions, or otherwise, prove that $$\sum _ { r = 1 } ^ { n } \frac { 2 } { 4 r ^ { 2 } - 1 } = 1 - \frac { 1 } { 2 n + 1 }$$ (b) Hence find the exact value of \(\sum _ { r = 11 } ^ { 20 } \frac { 2 } { 4 r ^ { 2 } - 1 }\).
[0pt] [FP1/P4 June 2005 Qn 1]
42. Find the general solution of the differential equation $$( x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y = \frac { 1 } { x } , \quad x > 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
[0pt] [FP1/P4 June 2005 Qn 3]
43. (a) On the same diagram, sketch the graphs of \(y = \left| x ^ { 2 } - 4 \right|\) and \(y = | 2 x - 1 |\), showing the coordinates of the points where the graphs meet the axes.
(b) Solve \(\left| x ^ { 2 } - 4 \right| = | 2 x - 1 |\), giving your answers in surd form where appropriate.
(c) Hence, or otherwise, find the set of values of \(x\) for which of \(\left| x ^ { 2 } - 4 \right| > | 2 x - 1 |\).
[0pt] [FP1/P4 June 2005 Qn 6]
44. (a) Find the general solution of the differential equation $$2 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 x = 2 t + 9$$ (b) Find the particular solution of this differential equation for which \(x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 1\) when \(t = 0\). The particular solution in part (b) is used to model the motion of a particle \(P\) on the \(x\)-axis. At time \(t\) seconds \(( t \geq 0 ) , P\) is \(x\) metres from the origin \(O\).
(c) Show that the minimum distance between \(O\) and \(P\) is \(\frac { 1 } { 2 } ( 5 + \ln 2 ) \mathrm { m }\) and justify that the distance is a minimum.
[0pt] [FP1/P4 June 2005 Qn 7]
45. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{858e6727-8498-462a-8064-d65254f1fd0f-22_1262_1093_306_447} The curve \(C\) which passes through \(O\) has polar equation $$r = 4 a ( 1 + \cos \theta ) , \quad - \pi < \theta \leq \pi$$ The line \(l\) has polar equation $$r = 3 a \sec \theta , \quad - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }$$ The line \(l\) cuts \(C\) at the points \(P\) and \(Q\), as shown in Figure 1 .
(a) Prove that \(P Q = 6 \sqrt { } 3 a\).
(6) The region \(R\), shown shaded in Figure 1, is bounded by \(l\) and \(C\).
(b) Use calculus to find the exact area of \(R\).
46. A complex number \(z\) is represented by the point \(P\) in the Argand diagram. Given that $$| z - 3 \mathrm { i } | = 3$$ (a) sketch the locus of \(P\).
(b) Find the complex number \(z\) which satisfies both \(| z - 3 \mathrm { i } | = 3\) and arg ( \(z - 3 \mathrm { i }\) ) \(= \frac { 3 } { 4 } \pi\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 2 \mathrm { i } } { w }$$ (c) Show that \(T\) maps \(| z - 3 \mathrm { i } | = 3\) to a line in the \(w\)-plane, and give the cartesian equation of this line.
[0pt] [FP3/P6 June 2005 Qn 4]
47. (a) Given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), show that $$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ where \(n\) is a positive integer.
(b) Show that $$\sin ^ { 5 } \theta = \frac { 1 } { 16 } ( \sin 5 \theta - 5 \sin 3 \theta + 10 \sin \theta )$$ (c) Hence solve, in the interval \(0 \leq \theta < 2 \pi\), $$\sin 5 \theta - 5 \sin 3 \theta + 6 \sin \theta = 0$$ [FP3/P6 June 2005 Qn 5]
48. Find the set of values of \(x\) for which $$\frac { x ^ { 2 } } { x - 2 } > 2 x$$ [FP1/P4 January 2006 Qn 2]
49. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 0$$ (b) Given that \(x = 1\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 1\) at \(t = 0\), find the particular solution of the differential equation, giving your answer in the form \(x = \mathrm { f } ( t )\).
(c) Sketch the curve with equation \(x = \mathrm { f } ( t ) , 0 \leq t \leq \pi\), showing the coordinates, as multiples of \(\pi\), of the points where the curve cuts the \(t\)-axis.
[0pt] [FP1/P4 January 2006 Qn 4]
50. (a) Show that the substitution \(y = v x\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 x - 4 y } { 4 x + 3 y }$$ into the differential equation $$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = - \frac { 3 v ^ { 2 } + 8 v - 3 } { 3 v + 4 }$$ (b) By solving differential equation (II), find a general solution of differential equation (I).
(c) Given that \(y = 7\) at \(x = 1\), show that the particular solution of differential equation (I) can be written as $$( 3 y - x ) ( y + 3 x ) = 200$$ [FP1/P4 January 2006 Qn 6]
51. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{858e6727-8498-462a-8064-d65254f1fd0f-25_533_967_315_539} A curve \(C\) has polar equation \(r ^ { 2 } = a ^ { 2 } \cos 2 \theta , 0 \leq \theta \leq \frac { \pi } { 4 }\). The line \(l\) is parallel to the initial line, and \(l\) is the tangent to \(C\) at the point \(P\), as shown in Figure 1.
(a) (i) Show that, for any point on \(C , r ^ { 2 } \sin ^ { 2 } \theta\) can be expressed in terms of \(\sin \theta\) and \(a\) only.
(ii) Hence, using differentiation, show that the polar coordinates of \(P\) are \(\left( \frac { a } { \sqrt { } 2 } , \frac { \pi } { 6 } \right)\).
(6) The shaded region \(R\), shown in Figure 1, is bounded by \(C\), the line \(l\) and the half-line with equation \(\theta = \frac { \pi } { 2 }\).
(b) Show that the area of \(R\) is \(\frac { a ^ { 2 } } { 16 } ( 3 \sqrt { } 3 - 4 )\).
(8)
[0pt] [FP1/P4 January 2006 Qn 7]
52. Solve the equation $$z ^ { 5 } = \mathrm { i }$$ giving your answers in the form \(\cos \theta + \mathrm { i } \sin \theta\).
[0pt] [FP3/P6 January 2006 Qn 1]
53. $$( 1 + 2 x ) \frac { \mathrm { d } y } { \mathrm {~d} x } = x + 4 y ^ { 2 }$$ (a) Show that $$( 1 + 2 x ) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 1 + 2 ( 4 y - 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x }$$ (b) Differentiate equation (1) with respect to \(x\) to obtain an equation involving $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x } , x \text { and } y .$$ Given that \(y = \frac { 1 } { 2 }\) at \(x = 0\),
(c) find a series solution for \(y\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
[0pt] [FP3/P6 January 2006 Qn 6]
54. In the Argand diagram the point \(P\) represents the complex number \(z\). Given that arg \(\left( \frac { z - 2 \mathrm { i } } { z + 2 } \right) = \frac { \pi } { 2 }\),
(a) sketch the locus of \(P\),
(b) deduce the value of \(| z + 1 - \mathrm { i } |\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is defined by $$w = \frac { 2 ( 1 + \mathrm { i } ) } { z + 2 } , \quad z \neq - 2$$ (c) Show that the locus of \(P\) in the \(z\)-plane is mapped to part of a straight line in the \(w\)-plane, and show this in an Argand diagram.
[0pt] [FP3/P6 January 2006 Qn 8]
55. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{858e6727-8498-462a-8064-d65254f1fd0f-27_435_1411_317_424}
\end{figure} Figure 1 shows a curve \(C\) with polar equation \(r = 4 a \cos 2 \theta , 0 \leq \theta \leq \frac { \pi } { 4 }\), and a line \(m\) with polar equation \(\theta = \frac { \pi } { 8 }\). The shaded region, shown in Figure 1, is bounded by \(C\) and \(m\). Use calculus to show that the area of the shaded region is \(\frac { 1 } { 2 } a ^ { 2 } ( \pi - 2 )\).
[0pt] [FP1 June 2006 Qn 2]
56. Given that \(3 x \sin 2 x\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = k \cos 2 x$$ where \(k\) is a constant,
(a) calculate the value of \(k\),
(4)
(b) find the particular solution of the differential equation for which at \(x = 0 , y = 2\), and for which at \(x = \frac { \pi } { 4 } , y = \frac { \pi } { 2 }\).
[0pt] [FP1 June 2006 Qn 3]
57. Given that for all real values of \(r\), $$( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = A r ^ { 2 } + B$$ where \(A\) and \(B\) are constants,
(a) find the value of \(A\) and the value of \(B\).
(2)
(b) Hence, or otherwise, prove that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
(c) Calculate \(\sum _ { r = 1 } ^ { 40 } ( 3 r - 1 ) ^ { 2 }\).
[0pt] [FP1 June 2006 Qn 5]
58. (a) Use algebra to find the exact solutions of the equation $$\left| 2 x ^ { 2 } + x - 6 \right| = 6 - 3 x$$ (b) On the same diagram, sketch the curve with equation \(y = \left| 2 x ^ { 2 } + x - 6 \right|\) and the line with equation \(y = 6 - 3 x\).
(c) Find the set of values of \(x\) for which $$\left| 2 x ^ { 2 } + x - 6 \right| > 6 - 3 x$$ [FP1 June 2006 Qn 7]
59. During an industrial process, the mass of salt, \(S \mathrm {~kg}\), dissolved in a liquid \(t\) minutes after the process begins is modelled by the differential equation $$\frac { \mathrm { d } S } { \mathrm {~d} t } + \frac { 2 S } { 120 - t } = \frac { 1 } { 4 } , \quad 0 \leq t < 120$$ Given that \(S = 6\) when \(t = 0\),
(a) find \(S\) in terms of \(t\),
(8)
(b) calculate the maximum mass of salt that the model predicts will be dissolved in the liquid at any one time during the process.
[0pt] [FP1 June 2006 Qn 8]
60. (a) Find the Taylor expansion of \(\cos 2 x\) in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 5 }\).
(b) Use your answer to (a) to obtain an estimate of \(\cos 2\), giving your answer to 6 decimal places.
[0pt] [FP3 June 2006 Qn 2]
61. (a) Use de Moivre's theorem to show that $$\sin 5 \theta = \sin \theta \left( 16 \cos ^ { 4 } \theta - 12 \cos ^ { 2 } \theta + 1 \right)$$ (b) Hence, or otherwise, solve, for \(0 \leq \theta < \pi\), $$\sin 5 \theta + \cos \theta \sin 2 \theta = 0$$ [FP3 June 2006 Qn 3]
62. The point \(P\) represents a complex number \(z\) on an Argand diagram, where $$| z - 6 + 3 \mathrm { i } | = 3 | z + 2 - \mathrm { i } |$$ (a) Show that the locus of \(P\) is a circle, giving the coordinates of the centre and the radius of this circle. The point \(Q\) represents a complex number \(z\) on an Argand diagram, where $$\tan [ \arg ( z + 6 ) ] = \frac { 1 } { 2 }$$ (b) On the same Argand diagram, sketch the locus of \(P\) and the locus of \(Q\).
(c) On your diagram, shade the region which satisfies both $$| z - 6 + 3 \mathrm { i } | > 3 | z + 2 - \mathrm { i } | \text { and } \tan [ \arg ( z + 6 ) ] > \frac { 1 } { 2 }$$ [FP3 June 2006 Qn 6]
63. Obtain the general solution of the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = \cos x , \quad x > 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(8)
[0pt] [FP1 January 2007 Qn 2]
64. (a) Show that $$\frac { r ^ { 3 } - r + 1 } { r ( r + 1 ) } \equiv r - 1 + \frac { 1 } { r } - \frac { 1 } { r + 1 } , \text { for } r \neq 0 , - 1$$ (b) Find \(\sum _ { r = 1 } ^ { n } \frac { r ^ { 3 } - r + 1 } { r ( r + 1 ) }\), expressing your answer as a single fraction in its simplest form.
65. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{858e6727-8498-462a-8064-d65254f1fd0f-31_563_842_1007_591}
\end{figure} Figure 1 shows a sketch of the curve with equation $$y = \frac { x ^ { 2 } - 1 } { | x + 2 | } , \quad x \neq - 2$$ The curve crosses the \(x\)-axis at \(x = 1\) and \(x = - 1\) and the line \(x = - 2\) is an asymptote of the curve.
(a) Use algebra to solve the equation \(\frac { x ^ { 2 } - 1 } { | x + 2 | } = 3 ( 1 - x )\).
(b) Hence, or otherwise, find the set of values of \(x\) for which $$\frac { x ^ { 2 } - 1 } { | x + 2 | } < 3 ( 1 - x )$$ [FP1 January 2007 Qn 5]
66. A scientist is modelling the amount of a chemical in the human bloodstream. The amount \(x\) of the chemical, measured in \(\mathrm { mg } l ^ { - 1 }\), at time \(t\) hours satisfies the differential equation $$2 x \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 6 \left( \frac { \mathrm {~d} x } { \mathrm {~d} t } \right) ^ { 2 } = x ^ { 2 } - 3 x ^ { 4 } , \quad x > 0$$ (a) Show that the substitution \(y = \frac { 1 } { x ^ { 2 } }\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + y = 3$$ (b) Find the general solution of differential equation [ I ]. Given that at time \(t = 0 , x = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\),
(c) find an expression for \(x\) in term of \(t\),
(d) write down the maximum value of \(x\) as \(t\) varies.
[0pt] [FP1 January 2007 Qn 7]
67. \section*{Figure 2}
\includegraphics[max width=\textwidth, alt={}]{858e6727-8498-462a-8064-d65254f1fd0f-33_645_871_292_557}
Figure 2 shows a sketch of the curve \(C\) with polar equation $$r = 4 \sin \theta \cos ^ { 2 } \theta , \quad 0 \leq \theta < \frac { \pi } { 2 }$$ The tangent to \(C\) at the point \(P\) is perpendicular to the initial line.
(a) Show that \(P\) has polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 6 } \right)\). The point \(Q\) on \(C\) has polar coordinates \(\left( \sqrt { } 2 , \frac { \pi } { 4 } \right)\). The shaded region \(R\) is bounded by \(O P , O Q\) and \(C\), as shown in Figure 2.
(b) Show that the area of \(R\) is given by $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \left( \sin ^ { 2 } 2 \theta \cos 2 \theta + \frac { 1 } { 2 } - \frac { 1 } { 2 } \cos 4 \theta \right) \mathrm { d } \theta$$ (c) Hence, or otherwise, find the area of \(R\), giving your answer in the form \(a + b \pi\), where \(a\) and \(b\) are rational numbers.
[0pt] [FP1 January 2007 Qn 8]
68. Find the set of values of \(x\) for which $$\frac { x + 1 } { 2 x - 3 } < \frac { 1 } { x - 3 }$$ [FP1 June 2007 Qn 1]
69. $$\frac { \mathrm { d } y } { \mathrm {~d} x } - y \tan x = 2 \sec ^ { 3 } x$$ Given that \(y = 3\) at \(x = 0\), find \(y\) in terms of \(x\).
[0pt] [FP1 June 2007 Qn 2]
70. (a) Show that \(( r + 1 ) ^ { 3 } - ( r - 1 ) ^ { 3 } \equiv 6 r ^ { 2 } + 2\).
(b) Hence show that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
(c) Show that \(\sum _ { r = n } ^ { 2 n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( a n + b )\), where \(a\) and \(b\) are constants to be found.
[0pt] [FP1 June 2007 Qn 3]
71. For the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 x ( x + 3 )$$ find the solution for which at \(x = 0 , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1\) and \(y = 1\).
[0pt] [FP1 June 2007 Qn 5]
72. (a) Sketch the curve \(C\) with polar equation $$r = 5 + \sqrt { 3 } \cos \theta , \quad 0 \leq \theta < 2 \pi$$ (b) Find the polar coordinates of the points where the tangents to \(C\) are parallel to the initial line \(\theta = 0\). Give your answers to 3 significant figures where appropriate.
(6)
(c) Using integration, find the area enclosed by the curve \(C\), giving your answer in terms of \(\pi\).
[0pt] [FP1 June 2007 Qn 7]
73. \(\left( 1 - x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 0\). At \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 1\).
(a) Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\).
(b) Express \(y\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
[0pt] [FP3 June 2007 Qn 2]
74. (a) Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ (b) Express \(32 \cos ^ { 6 } \theta\) in the form \(p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + s\), where \(p , q , r\) and \(s\) are integers.
(c) Hence find the exact value of \(\int _ { 0 } ^ { \frac { \pi } { 3 } } \cos ^ { 6 } \theta \mathrm {~d} \theta\).
[0pt] [FP3 June 2007 Qn 4]
75. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by $$w = \frac { z + \mathrm { i } } { z } , \quad z \neq 0$$ (a) The transformation \(T\) maps the points on the line with equation \(y = x\) in the \(z\)-plane, other than \(( 0,0 )\), to points on a line \(l\) in the \(w\)-plane. Find a cartesian equation of \(l\).
(5)
(b) Show that the image, under \(T\), of the line with equation \(x + y + 1 = 0 \square \square\) n the \(z\)-plane is a circle \(C\) in the \(w\)-plane, where \(C\) has cartesian equation $$u ^ { 2 } + v ^ { 2 } - u + v = 0$$ (c) On the same Argand diagram, sketch \(l\) and \(C\).
[0pt] [FP3 June 2007 Qn 8]
76. Solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - 3 y = x$$ to obtain \(y\) as a function of \(x\).
[0pt] [FP1 January 2008 Qn 1]
77. (a) Simplify the expression \(\frac { ( x + 3 ) ( x + 9 ) } { x - 1 } - ( 3 x - 5 )\), giving your answer in the form \(\frac { a ( x + b ) ( x + c ) } { x - 1 }\), where \(a , b\) and \(c\) are integers.
(b) Hence, or otherwise, solve the inequality $$\frac { ( x + 3 ) ( x + 9 ) } { x - 1 } > 3 x - 5$$ [FP1 January 2008 Qn 3]
78. (a) Express \(\frac { 5 r + 4 } { r ( r + 1 ) ( r + 2 ) }\) in partial fractions.
(4)
(b) Hence, or otherwise, show that $$\sum _ { r = 1 } ^ { n } \frac { 5 r + 4 } { r ( r + 1 ) ( r + 2 ) } = \frac { 7 n ^ { 2 } + 11 n } { 2 ( n + 1 ) ( n + 2 ) }$$
  1. (a) Find the general solution of the differential equation
$$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 y = x ^ { 2 }$$ (b) Find the particular solution for which, at \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\).
[0pt] [FP1 January 2008 Qn 7]
80. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{858e6727-8498-462a-8064-d65254f1fd0f-38_506_725_349_632} Figure 1 shows the curve \(C _ { 1 }\) which has polar equation \(r = a ( 3 + 2 \cos \theta ) , 0 \leq \theta < 2 \pi\), and the circle \(C _ { 2 }\) with equation \(r = 4 a , 0 \leq \theta < 2 \pi\), where \(a\) is a positive constant.
(a) Find, in terms of \(a\), the polar coordinates of the points where the curve \(C _ { 1 }\) meets the circle \(C _ { 2 }\). The regions enclosed by the curves \(C _ { 1 }\) and \(C _ { 2 }\) overlap and this common region \(R\) is shaded in the figure.
(b) Find, in terms of \(a\), an exact expression for the area of the shaded region \(R\).
(8)
(c) In a single diagram, copy the two curves in Figure 1 and also sketch the curve \(C _ { 3 }\) with polar equation \(r = 2 a \cos \theta , 0 \leq \theta < 2 \pi\). Show clearly the coordinates of the points of intersection of \(C _ { 1 } , C _ { 2 }\) and \(C _ { 3 }\) with the initial line, \(\theta = 0\).
[0pt] [FP1 January 2008 Qn 8]
81. (a) Find, in terms of \(k\), the general solution of the differential equation $$\frac { \mathbf { d } ^ { 2 } x } { \mathbf { d } t ^ { 2 } } + 4 \frac { \mathbf { d } x } { \mathbf { d } t } + 3 x = k t + 5 , \quad \text { where } k \text { is a constant and } t > 0$$ For large values of \(t\), this general solution may be approximated by a linear function.
(b) Given that \(k = 6\), find the equation of this linear function.
[0pt] [FP1 June 2008 Qn 4]
82. (a) Find, in the simplest surd form where appropriate, the exact values of \(x\) for which $$\frac { x } { 2 } + 3 = \left| \frac { 4 } { x } \right|$$ (b) Sketch, on the same axes, the line with equation \(y = \frac { x } { 2 } + 3\) and the graph of \(y = \left| \frac { 4 } { x } \right| , x \neq 0\).
(c) Find the set of values of \(x\) for which \(\frac { x } { 2 } + 3 > \left| \frac { 4 } { x } \right|\).
[0pt] [FP1 June 2008 Qn 5]
83. (a) Express \(\frac { 2 } { ( r + 1 ) ( r + 3 ) }\) in partial fractions.
(b) Hence prove, by the method of differences, that $$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 1 ) ( r + 3 ) } = \frac { n ( a n + b ) } { 6 ( n + 2 ) ( n + 3 ) }$$ where \(a\) and \(b\) are constants to be found.
(c) Find the value of \(\sum _ { r = 21 } ^ { 30 } \frac { 2 } { ( r + 1 ) ( r + 3 ) }\), to 5 decimal places.
[0pt] [FP1 June 2008 Qn 6]
84. (a) Show that the substitution \(y = v x\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x } { y } + \frac { 3 y } { x } , \quad x > 0 , \quad y > 0$$ into the differential equation $$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = 2 v + \frac { 1 } { v }$$ (b) By solving differential equation (II), find a general solution of differential equation (I) in the form \(y = \mathrm { f } ( x )\). Given that \(y = 3\) at \(x = 1\),
(c) find the particular solution of differential equation (I).
[0pt] [FP1 June 2008 Qn 7]
85. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{858e6727-8498-462a-8064-d65254f1fd0f-41_922_789_278_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\) shown in Figure 1 has polar equation $$r = 4 ( 1 - \cos \theta ) , \quad 0 \leq \theta \leq \frac { \pi } { 2 }$$ At the point \(P\) on \(C\), the tangent to \(C\) is parallel to the line \(\theta = \frac { \pi } { 2 }\).
(a) Show that \(P\) has polar coordinates \(\left( 2 , \frac { \pi } { 3 } \right)\). The curve \(C\) meets the line \(\theta = \frac { \pi } { 2 }\) at the point \(A\). The tangent to \(C\) at \(P\) meets the initial line at the point \(N\). The finite region \(R\), shown shaded in Figure 1, is bounded by the initial line, the line \(\theta = \frac { \pi } { 2 }\), the arc \(A P\) of \(C\) and the line \(P N\).
(b) Calculate the exact area of \(R\).
(8)
[0pt] [FP1 June 2008 Qn 8]
86. $$\left( x ^ { 2 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 y ^ { 2 } + ( 1 - 2 x ) \frac { \mathrm { d } y } { \mathrm {~d} x }$$ (a) By differentiating equation (I) with respect to \(x\), show that $$\left( x ^ { 2 } + 1 \right) \frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = ( 1 - 4 x ) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 4 y - 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x }$$ Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\),
(b) find the series solution for \(y\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
(c) Use your series to estimate the value of \(y\) at \(x = - 0.5\), giving your answer to two decimal places.
[0pt] [FP3 June 2008 Qn 3]
87. The point \(P\) represents a complex number \(z\) on an Argand diagram such that $$| z - 3 | = 2 | z |$$ (a) Show that, as \(z\) varies, the locus of \(P\) is a circle, and give the coordinates of the centre and the radius of the circle. The point \(Q\) represents a complex number \(z\) on an Argand diagram such that $$| z + 3 | = | z - \mathrm { i } \sqrt { } 3 |$$ (b) Sketch, on the same Argand diagram, the locus of \(P\) and the locus of \(Q\) as \(z\) varies.
(c) On your diagram shade the region which satisfies $$| z - 3 | \geq 2 | z | \text { and } | z + 3 | \geq | z - \mathrm { i } \sqrt { } 3 |$$ [FP3 June 2008 Qn 4]
88. De Moivre's theorem states that $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta \text { for } n \in \mathbb { R }$$ (a) Use induction to prove de Moivre's theorem for \(n \in \mathbb { Z } ^ { + }\).
(b) Show that $$\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta$$ (c) Hence show that \(2 \cos \frac { \pi } { 10 }\) is a root of the equation \(x ^ { 4 } - 5 x ^ { 2 } + 5 = 0\).
[0pt] [FP3 June 2008 Qn 6]
Edexcel F3 Specimen Q4
4. \(I _ { n } = \int _ { 0 } ^ { a } ( a - x ) ^ { n } \cos x \mathrm {~d} x , \quad a > 0 , \quad n \geqslant 0\)
  1. Show that, for \(n \geqslant 2\), $$I _ { n } = n a ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$
  2. Hence evaluate \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( \frac { \pi } { 2 } - x \right) ^ { 2 } \cos x d x\)
Edexcel F3 Specimen Q5
5. Given that \(y = ( \operatorname { arcosh } 3 x ) ^ { 2 }\), where \(3 x > 1\), show that
  1. \(\left( 9 x ^ { 2 } - 1 \right) \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } = 36 y\),
  2. \(\left( 9 x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 18\).
Edexcel F3 Specimen Q6
6. \(\mathbf { M } = \left( \begin{array} { c c c } 1 & 0 & 3
0 & - 2 & 1
k & 0 & 1 \end{array} \right)\), where \(k\) is a constant.
Given that \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\) ,
(a)find the eigenvalue of \(\mathbf { M }\) corresponding to \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\) ,
(b)show that \(k = 3\) ,
(c)show that \(\mathbf { M }\) has exactly two eigenvalues. A transformation \(T : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by \(\mathbf { M }\) .
The transformation \(T\) maps the line \(l _ { 1 }\) ,with cartesian equations \(\frac { x - 2 } { 1 } = \frac { y } { - 3 } = \frac { z + 1 } { 4 }\) ,onto the line \(l _ { 2 }\) .
6. \(\mathbf { M } = \left( \begin{array} { c c c } 0 & - 2 & 1
k & 0 & 1 \end{array} \right)\), where \(k\) is a constant. Given that \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\) ,
(a)find the eigenvalue of \(\mathbf { M }\) corresponding to \(\left( \begin{array} { l } 6
1
6 \end{array} \right)\)
(d)Taking \(k = 3\) ,find cartesian equations of \(l _ { 2 }\) .
Edexcel F3 Specimen Q7
  1. The plane \(\Pi\) has vector equation
$$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + \lambda ( - 4 \mathbf { i } + \mathbf { j } ) + \mu ( 6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } )$$
  1. Find an equation of \(\Pi\) in the form \(\mathbf { r } . \mathbf { n } = p\), where \(\mathbf { n }\) is a vector perpendicular to \(\Pi\) and \(p\) is a constant. The point \(P\) has coordinates \(( 6,13,5 )\). The line \(l\) passes through \(P\) and is perpendicular to \(\Pi\). The line \(l\) intersects \(\Pi\) at the point \(N\).
  2. Show that the coordinates of \(N\) are \(( 3,1 , - 1 )\). The point \(R\) lies on \(\Pi\) and has coordinates \(( 1,0,2 )\).
  3. Find the perpendicular distance from \(N\) to the line \(P R\). Give your answer to 3 significant figures.
Edexcel F3 Specimen Q8
  1. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\).
The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  1. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  2. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$
Edexcel FP3 Q1
  1. Solve the equation
$$7 \operatorname { sech } x - \tanh x = 5$$ Give your answers in the form \(\ln a\), where \(a\) is a rational number.
Edexcel FP3 Q2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{045545c7-06d9-40b6-9d01-fc792ab0aa07-01_222_241_525_2042} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) respectively, relative to a fixed origin \(O\), as shown in Figure 1. It is given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } , \quad \mathbf { b } = \mathbf { 3 i } - \mathbf { j } + \mathbf { k } \quad \text { and } \quad \mathbf { c } = \mathbf { 2 i } + \mathbf { j } - \mathbf { k } .$$ Calculate
  1. \(\mathbf { b } \times \mathbf { c }\),
  2. \(\mathbf { a . } ( \mathbf { b } \times \mathbf { c } )\),
  3. the area of triangle \(O B C\),
  4. the volume of the tetrahedron \(O A B C\).
Edexcel FP3 Q4
4. Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
  2. Hence, or otherwise, find $$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
Edexcel FP3 Q5
5. $$I _ { n } = \int _ { 0 } ^ { 5 } \frac { x ^ { n } } { \sqrt { } \left( 25 - x ^ { 2 } \right) } \mathrm { d } x , \quad n \geq 0$$
  1. Find an expression for \(\int \frac { x } { \sqrt { \left( 25 - x ^ { 2 } \right) } } \mathrm { d } x , \quad 0 \leq x \leq 5\).
  2. Using your answer to part (a), or otherwise, show that $$I _ { n } = \frac { 25 ( n - 1 ) } { n } I _ { n - 2 } , \quad n \geq 2$$
  3. Find \(I _ { 4 }\) in the form \(k \pi\), where \(k\) is a fraction.
Edexcel FP3 Q6
6. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\), where \(a\) and \(b\) are constants. The line \(L\) has equation \(y = m x + c\), where \(m\) and \(c\) are constants.
  1. Given that \(L\) and \(H\) meet, show that the \(x\)-coordinates of the points of intersection are the roots of the equation $$\left( a ^ { 2 } m ^ { 2 } - b ^ { 2 } \right) x ^ { 2 } + 2 a ^ { 2 } m c x + a ^ { 2 } \left( c ^ { 2 } + b ^ { 2 } \right) = 0$$ Hence, given that \(L\) is a tangent to \(H\),
  2. show that \(a ^ { 2 } m ^ { 2 } = b ^ { 2 } + c ^ { 2 }\). The hyperbola \(H ^ { \prime }\) has equation \(\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 16 } = 1\).
  3. Find the equations of the tangents to \(H ^ { \prime }\) which pass through the point \(( 1,4 )\).
Edexcel FP3 Q7
7. The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = \left( \begin{array} { r } 1
- 1
2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
3
4 \end{array} \right) \quad \text { and } \quad \mathbf { r } = \left( \begin{array} { r } \alpha
- 4
0 \end{array} \right) + \mu \left( \begin{array} { l } 0
3
2 \end{array} \right) .$$ If the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect, find
  1. the value of \(\alpha\),
  2. an equation for the plane containing the lines \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in the form \(a x + b y + c z + d = 0\), where \(a , b , c\) and \(d\) are constants. For other values of \(\alpha\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect and are skew lines.
    Given that \(\alpha = 2\),
  3. find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
Edexcel FP3 Q8
8. A curve, which is part of an ellipse, has parametric equations $$x = 3 \cos \theta , \quad y = 5 \sin \theta , \quad 0 \leq \theta \leq \frac { \pi } { 2 }$$ The curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is given by the integral $$k \pi \int _ { 0 } ^ { a } \sqrt { } \left( 16 c ^ { 2 } + 9 \right) \mathrm { d } c , \text { where } c = \cos \theta$$ and where \(k\) and \(\alpha\) are constants to be found.
  2. Using the substitution \(c = \frac { 3 } { 4 } \sinh u\), or otherwise, evaluate the integral, showing all of your working and giving the final answer to 3 significant figures. \section*{END} \section*{TOTAL FOR PAPER: 75 MARKS} Mathematical Formulae (Pink) Items included with question papers Nil Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them. Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Further Pure Mathematics FP3), the paper reference (6669), your surname, initials and signature. A booklet 'Mathematical Formulae and Statistical Tables' is provided.
    Full marks may be obtained for answers to ALL questions.
    There are 8 questions in this question paper. The total mark for this paper is 75 . You must ensure that your answers to parts of questions are clearly labelled.
    You must show sufficient working to make your methods clear to the Examiner.
    Answers without working may not gain full credit. N35389RA \({ } _ { \text {This publication may only be reproduced in accordance with Edexcel Limited copyright policy. } }\) ©2010 Edexcel Limited.
    1. The line \(x = 8\) is a directrix of the ellipse with equation
    $$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 , \quad a > 0 , \quad b > 0$$ and the point \(( 2,0 )\) is the corresponding focus.
    Find the value of \(a\) and the value of \(b\).
    2. Use calculus to find the exact value of \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\).
    3. (a) Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh 2 x = 1 + 2 \sinh ^ { 2 } x$$
  3. Solve the equation $$\cosh 2 x - 3 \sinh x = 15$$ giving your answers as exact logarithms.
    4. $$I _ { n } = \int _ { 0 } ^ { a } ( a - x ) ^ { n } \cos x \mathrm {~d} x , \quad a \geq 0 , \quad n \geq 0$$
  4. Show that, for \(n \geq 2\), $$I _ { n } = n a ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$
  5. Hence evaluate \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( \frac { \pi } { 2 } - x \right) ^ { 2 } \cos x \mathrm {~d} x\).
    5. Given that \(y = ( \operatorname { arcosh } 3 x ) ^ { 2 }\), where \(3 x > 1\), show that
  6. \(\left( 9 x ^ { 2 } - 1 \right) \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } = 36 y\),
  7. \(\left( 9 x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 18\).
    6. \(\mathbf { M } = \left( \begin{array} { r r r } 1 & 0 & 3
    0 & - 2 & 1
    k & 0 & 1 \end{array} \right)\), where \(k\) is a constant.
    Given that \(\left( \begin{array} { l } 6
    1
    6 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\),
  8. find the eigenvalue of \(\mathbf { M }\) corresponding to \(\left( \begin{array} { l } 6
    1
    6 \end{array} \right)\),
  9. show that \(k = 3\),
  10. show that \(\mathbf { M }\) has exactly two eigenvalues. A transformation \(T : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by \(\mathbf { M }\).
    The transformation \(T\) maps the line \(l _ { 1 }\), with cartesian equations \(\frac { x - 2 } { 1 } = \frac { y } { - 3 } = \frac { z + 1 } { 4 }\), onto the line \(l _ { 2 }\).
  11. Taking \(k = 3\), find cartesian equations of \(l _ { 2 }\).
    7. The plane \(\Pi\) has vector equation $$\mathbf { r } = 3 \mathbf { i } + \mathbf { k } + \lambda ( - 4 \mathbf { i } + \mathbf { j } ) + \mu ( 6 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } )$$
  12. Find an equation of \(\Pi\) in the form \(\mathbf { r } \cdot \mathbf { n } = p\), where \(\mathbf { n }\) is a vector perpendicular to \(\Pi\) and \(p\) is a constant. The point \(P\) has coordinates \(( 6,13,5 )\). The line \(l\) passes through \(P\) and is perpendicular to \(\Pi\). The line \(l\) intersects \(\Pi\) at the point \(N\).
  13. Show that the coordinates of \(N\) are \(( 3,1 , - 1 )\). The point \(R\) lies on \(\Pi\) and has coordinates \(( 1,0,2 )\).
  14. Find the perpendicular distance from \(N\) to the line \(P R\). Give your answer to 3 significant figures.
    8. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\). The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  15. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  16. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$
Edexcel FP3 Q9
9. $$I _ { n } = \int \left( x ^ { 2 } + 1 \right) ^ { - n } \mathrm {~d} x , \quad n > 0$$
  1. Show that, for \(n > 0\), $$I _ { n + 1 } = \frac { x \left( x ^ { 2 } + 1 \right) ^ { - n } } { 2 n } + \frac { 2 n - 1 } { 2 n } I _ { n }$$
  2. Find \(I _ { 2 }\).
Edexcel FP3 Q1
  1. An ellipse has equation \(\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1\).
    1. Sketch the ellipse.
    2. Find the value of the eccentricity \(e\).
    3. State the coordinates of the foci of the ellipse.
    4. Solve the equation
    $$10 \cosh x + 2 \sinh x = 11 .$$ Give each answer in the form \(\ln a\) where \(a\) is a rational number.
    [0pt] [P5 June 2002 Qn 3]
Edexcel FP3 Q4
4. $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 2 } } x ^ { n } \cos x \mathrm {~d} x , \quad n \geq 0$$
  1. Prove that \(I _ { n } = \left( \frac { \pi } { 2 } \right) ^ { n } - n ( n - 1 ) I _ { n - 2 } , n \geq 2\).
  2. Find an exact expression for \(I _ { 6 }\).
    [0pt] [P5 June 2002 Qn 4]
Edexcel FP3 Q5
5. (a) Given that \(y = \arctan 3 x\), and assuming the derivative of \(\tan x\), prove that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { 1 + 9 x ^ { 2 } }$$ (b) Show that $$\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 3 } } 6 x \arctan 3 x \mathrm {~d} x = \frac { 1 } { 9 } ( 4 \pi - 3 \sqrt { } 3 )$$ (6)
[0pt] [P5 June 2002 Qn 6] \section*{6.} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{6706ed7f-4575-4898-b757-aee8475b2a30-04_815_431_351_913}
\end{figure} The curve \(C\) shown in Fig. 1 has equation \(y ^ { 2 } = 4 x , 0 \leq x \leq 1\).
The part of the curve in the first quadrant is rotated through \(2 \pi\) radians about the \(x\)-axis.
(a) Show that the surface area of the solid generated is given by $$4 \pi \int _ { 0 } ^ { 1 } \sqrt { ( 1 + x ) } d x$$ (b) Find the exact value of this surface area.
(c) Show also that the length of the curve \(C\), between the points \(( 1 , - 2 )\) and \(( 1,2 )\), is given by $$2 \int _ { 0 } ^ { 1 } \sqrt { \left( \frac { x + 1 } { x } \right) } \mathrm { d } x$$ (d) Use the substitution \(x = \sinh ^ { 2 } \theta\) to show that the exact value of this length is $$2 [ \sqrt { } 2 + \ln ( 1 + \sqrt { } 2 ) ]$$ [P5 June 2002 Qn 8]
Edexcel FP3 Q7
7. Prove that \(\sinh ( \mathrm { i } \pi - \theta ) = \sinh \theta\).
[0pt] [P6 June 2002 Qn 1]
Edexcel FP3 Q8
8. $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 0 & 4
0 & 5 & 4
4 & 4 & 3 \end{array} \right)$$
  1. Verify that \(\left( \begin{array} { r } 2
    - 2
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and find the corresponding eigenvalue.
  2. Show that 9 is another eigenvalue of \(\mathbf { A }\) and find the corresponding eigenvector.
  3. Given that the third eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 2
    1
    - 2 \end{array} \right)\), write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { P } ^ { \mathrm { T } } \mathbf { A } \mathbf { P } = \mathbf { D } .$$
Edexcel FP3 Q9
  1. The plane \(\Pi\) passes through the points
$$A ( - 1 , - 1,1 ) , B ( 4,2,1 ) \text { and } C ( 2,1,0 )$$
  1. Find a vector equation of the line perpendicular to \(\Pi\) which passes through the point \(D ( 1,2,3 )\).
  2. Find the volume of the tetrahedron \(A B C D\).
  3. Obtain the equation of \(\Pi\) in the form r.n \(= p\). The perpendicular from \(D\) to the plane \(\Pi\) meets \(\Pi\) at the point \(E\).
  4. Find the coordinates of \(E\).
  5. Show that \(D E = \frac { 11 \sqrt { 35 } } { 35 }\). The point \(D ^ { \prime }\) is the reflection of \(D\) in \(\Pi\).
  6. Find the coordinates of \(D ^ { \prime }\).
    (3)
    [0pt] [P6 June 2002 Qn 7]
Edexcel FP3 Q10
10. Find the values of \(x\) for which $$4 \cosh x + \sinh x = 8$$ giving your answer as natural logarithms.
[0pt] [P5 June 2003 Qn 1]