Edexcel FP3 — Question 8

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
TopicInvariant lines and eigenvalues and vectors

8. $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 0 & 4
0 & 5 & 4
4 & 4 & 3 \end{array} \right)$$
  1. Verify that \(\left( \begin{array} { r } 2
    - 2
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and find the corresponding eigenvalue.
  2. Show that 9 is another eigenvalue of \(\mathbf { A }\) and find the corresponding eigenvector.
  3. Given that the third eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 2
    1
    - 2 \end{array} \right)\), write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { P } ^ { \mathrm { T } } \mathbf { A } \mathbf { P } = \mathbf { D } .$$