Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel S2 2006 January Q2
8 marks Moderate -0.3
2. Accidents on a particular stretch of motorway occur at an average rate of 1.5 per week.
  1. Write down a suitable model to represent the number of accidents per week on this stretch of motorway. Find the probability that
  2. there will be 2 accidents in the same week,
  3. there is at least one accident per week for 3 consecutive weeks,
  4. there are more than 4 accidents in a 2 week period.
Edexcel S2 2006 January Q3
8 marks Easy -1.2
3. The random variable \(X\) is uniformly distributed over the interval \([ - 1,5 ]\).
  1. Sketch the probability density function \(\mathrm { f } ( x )\) of \(X\). Find
  2. \(\mathrm { E } ( X )\),
  3. \(\operatorname { Var } ( \mathrm { X } )\),
  4. \(\mathrm { P } ( - 0.3 < X < 3.3 )\).
Edexcel S2 2006 January Q4
4 marks Standard +0.3
4. The random variable \(X \sim \mathrm {~B} ( 150,0.02 )\). Use a suitable approximation to estimate \(\mathrm { P } ( X > 7 )\).
Edexcel S2 2006 January Q5
15 marks Standard +0.3
5. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where $$f ( x ) = \begin{cases} k x ( x - 2 ) , & 2 \leq x \leq 3 \\ 0 , & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = \frac { 3 } { 4 }\). Find
  2. \(\mathrm { E } ( X )\),
  3. the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Show that the median value of \(X\) lies between 2.70 and 2.75.
Edexcel S2 2006 January Q6
13 marks Moderate -0.8
6. A bag contains a large number of coins. Half of them are 1 p coins, one third are 2 p coins and the remainder are 5p coins.
  1. Find the mean and variance of the value of the coins. A random sample of 2 coins is chosen from the bag.
  2. List all the possible samples that can be drawn.
  3. Find the sampling distribution of the mean value of these samples.
Edexcel S2 2006 January Q7
19 marks Standard +0.3
7. A teacher thinks that \(20 \%\) of the pupils in a school read the Deano comic regularly. He chooses 20 pupils at random and finds 9 of them read the Deano.
    1. Test, at the \(5 \%\) level of significance, whether or not there is evidence that the percentage of pupils that read the Deano is different from 20\%. State your hypotheses clearly.
    2. State all the possible numbers of pupils that read the Deano from a sample of size 20 that will make the test in part (a)(i) significant at the \(5 \%\) level.
      (9) The teacher takes another 4 random samples of size 20 and they contain 1, 3, 1 and 4 pupils that read the Deano.
  1. By combining all 5 samples and using a suitable approximation test, at the \(5 \%\) level of significance, whether or not this provides evidence that the percentage of pupils in the school that read the Deano is different from 20\%.
  2. Comment on your results for the tests in part (a) and part (b).
Edexcel S2 2007 January Q1
4 marks Easy -1.8
  1. (a) Define a statistic.
A random sample \(X _ { 1 } , X _ { 2 } , \ldots , X _ { \mathrm { n } }\) is taken from a population with unknown mean \(\mu\).
(b) For each of the following state whether or not it is a statistic.
  1. \(\frac { X _ { 1 } + X _ { 4 } } { 2 }\),
  2. \(\frac { \sum X ^ { 2 } } { n } - \mu ^ { 2 }\).
Edexcel S2 2007 January Q2
5 marks Moderate -0.8
2. The random variable \(J\) has a Poisson distribution with mean 4.
  1. Find \(\mathrm { P } ( J \geqslant 10 )\). The random variable \(K\) has a binomial distribution with parameters \(n = 25 , p = 0.27\).
  2. Find \(\mathrm { P } ( K \leqslant 1 )\).
Edexcel S2 2007 January Q3
15 marks Standard +0.3
3. For a particular type of plant \(45 \%\) have white flowers and the remainder have coloured flowers. Gardenmania sells plants in batches of 12. A batch is selected at random. Calculate the probability that this batch contains
  1. exactly 5 plants with white flowers,
  2. more plants with white flowers than coloured ones. Gardenmania takes a random sample of 10 batches of plants.
  3. Find the probability that exactly 3 of these batches contain more plants with white flowers than coloured ones. Due to an increasing demand for these plants by large companies, Gardenmania decides to sell them in batches of 50 .
  4. Use a suitable approximation to calculate the probability that a batch of 50 plants contains more than 25 plants with white flowers.
Edexcel S2 2007 January Q4
12 marks Moderate -0.8
4. (a) State the condition under which the normal distribution may be used as an approximation to the Poisson distribution.
(b) Explain why a continuity correction must be incorporated when using the normal distribution as an approximation to the Poisson distribution. A company has yachts that can only be hired for a week at a time. All hiring starts on a Saturday.
During the winter the mean number of yachts hired per week is 5 .
(c) Calculate the probability that fewer than 3 yachts are hired on a particular Saturday in winter. During the summer the mean number of yachts hired per week increases to 25 . The company has only 30 yachts for hire.
(d) Using a suitable approximation find the probability that the demand for yachts cannot be met on a particular Saturday in the summer. In the summer there are 16 Saturdays on which a yacht can be hired.
(e) Estimate the number of Saturdays in the summer that the company will not be able to meet the demand for yachts.
Edexcel S2 2007 January Q5
12 marks Moderate -0.3
5. The continuous random variable \(X\) is uniformly distributed over the interval \(\alpha < x < \beta\).
  1. Write down the probability density function of \(X\), for all \(x\).
  2. Given that \(\mathrm { E } ( X ) = 2\) and \(\mathrm { P } ( X < 3 ) = \frac { 5 } { 8 }\) find the value of \(\alpha\) and the value of \(\beta\). A gardener has wire cutters and a piece of wire 150 cm long which has a ring attached at one end. The gardener cuts the wire, at a randomly chosen point, into 2 pieces. The length, in cm, of the piece of wire with the ring on it is represented by the random variable \(X\). Find
  3. \(\mathrm { E } ( X )\),
  4. the standard deviation of \(X\),
  5. the probability that the shorter piece of wire is at most 30 cm long.
Edexcel S2 2007 January Q6
13 marks Standard +0.3
6. Past records from a large supermarket show that \(20 \%\) of people who buy chocolate bars buy the family size bar. On one particular day a random sample of 30 people was taken from those that had bought chocolate bars and 2 of them were found to have bought a family size bar.
  1. Test at the \(5 \%\) significance level, whether or not the proportion \(p\), of people who bought a family size bar of chocolate that day had decreased. State your hypotheses clearly. The manager of the supermarket thinks that the probability of a person buying a gigantic chocolate bar is only 0.02 . To test whether this hypothesis is true the manager decides to take a random sample of 200 people who bought chocolate bars.
  2. Find the critical region that would enable the manager to test whether or not there is evidence that the probability is different from 0.02 . The probability of each tail should be as close to \(2.5 \%\) as possible.
  3. Write down the significance level of this test.
Edexcel S2 2007 January Q7
14 marks Standard +0.3
7. The continuous random variable \(X\) has cumulative distribution function $$\mathrm { F } ( x ) = \begin{cases} 0 , & x < 0 \\ 2 x ^ { 2 } - x ^ { 3 } , & 0 \leqslant x \leqslant 1 \\ 1 , & x > 1 \end{cases}$$
  1. Find \(\mathrm { P } ( X > 0.3 )\).
  2. Verify that the median value of \(X\) lies between \(x = 0.59\) and \(x = 0.60\).
  3. Find the probability density function \(\mathrm { f } ( x )\).
  4. Evaluate \(\mathrm { E } ( X )\).
  5. Find the mode of \(X\).
  6. Comment on the skewness of \(X\). Justify your answer.
Edexcel S2 2008 January Q1
4 marks Easy -2.0
  1. (a) Explain what you understand by a census.
Each cooker produced at GT Engineering is stamped with a unique serial number. GT Engineering produces cookers in batches of 2000. Before selling them, they test a random sample of 5 to see what electric current overload they will take before breaking down.
(b) Give one reason, other than to save time and cost, why a sample is taken rather than a census.
(c) Suggest a suitable sampling frame from which to obtain this sample.
(d) Identify the sampling units.
Edexcel S2 2008 January Q2
7 marks Standard +0.3
2. The probability of a bolt being faulty is 0.3 . Find the probability that in a random sample of 20 bolts there are
  1. exactly 2 faulty bolts,
  2. more than 3 faulty bolts. These bolts are sold in bags of 20. John buys 10 bags.
  3. Find the probability that exactly 6 of these bags contain more than 3 faulty bolts.
Edexcel S2 2008 January Q3
11 marks Moderate -0.8
3. (a) State two conditions under which a Poisson distribution is a suitable model to use in statistical work. The number of cars passing an observation point in a 10 minute interval is modelled by a Poisson distribution with mean 1.
(b) Find the probability that in a randomly chosen 60 minute period there will be
  1. exactly 4 cars passing the observation point,
  2. at least 5 cars passing the observation point. The number of other vehicles, other than cars, passing the observation point in a 60 minute interval is modelled by a Poisson distribution with mean 12.
    (c) Find the probability that exactly 1 vehicle, of any type, passes the observation point in a 10 minute period.
Edexcel S2 2008 January Q4
7 marks Standard +0.3
  1. The continuous random variable \(Y\) has cumulative distribution function \(\mathrm { F } ( y )\) given by
$$\mathrm { F } ( y ) = \left\{ \begin{array} { c l } 0 & y < 1 \\ k \left( y ^ { 4 } + y ^ { 2 } - 2 \right) & 1 \leqslant y \leqslant 2 \\ 1 & y > 2 \end{array} \right.$$
  1. Show that \(k = \frac { 1 } { 18 }\).
  2. Find \(\mathrm { P } ( Y > 1.5 )\).
  3. Specify fully the probability density function f(y).
Edexcel S2 2008 January Q5
7 marks Moderate -0.3
  1. Dhriti grows tomatoes. Over a period of time, she has found that there is a probability 0.3 of a ripe tomato having a diameter greater than 4 cm . She decides to try a new fertiliser. In a random sample of 40 ripe tomatoes, 18 have a diameter greater than 4 cm . Dhriti claims that the new fertiliser has increased the probability of a ripe tomato being greater than 4 cm in diameter.
Test Dhriti's claim at the 5\% level of significance. State your hypotheses clearly.
Edexcel S2 2008 January Q6
12 marks Standard +0.3
6. The probability that a sunflower plant grows over 1.5 metres high is 0.25 . A random sample of 40 sunflower plants is taken and each sunflower plant is measured and its height recorded.
  1. Find the probability that the number of sunflower plants over 1.5 m high is between 8 and 13 (inclusive) using
    1. a Poisson approximation,
    2. a Normal approximation.
  2. Write down which of the approximations used in part (a) is the most accurate estimate of the probability. You must give a reason for your answer.
Edexcel S2 2008 January Q7
14 marks Standard +0.3
  1. (a) Explain what you understand by
    1. a hypothesis test,
    2. a critical region.
    During term time, incoming calls to a school are thought to occur at a rate of 0.45 per minute. To test this, the number of calls during a random 20 minute interval, is recorded.
    (b) Find the critical region for a two-tailed test of the hypothesis that the number of incoming calls occurs at a rate of 0.45 per 1 minute interval. The probability in each tail should be as close to \(2.5 \%\) as possible.
    (c) Write down the actual significance level of the above test. In the school holidays, 1 call occurs in a 10 minute interval.
    (d) Test, at the \(5 \%\) level of significance, whether or not there is evidence that the rate of incoming calls is less during the school holidays than in term time.
Edexcel S2 2008 January Q8
13 marks Moderate -0.3
  1. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by
$$f ( x ) = \left\{ \begin{array} { c c } 2 ( x - 2 ) & 2 \leqslant x \leqslant 3 \\ 0 & \text { otherwise } \end{array} \right.$$
  1. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
  2. Write down the mode of \(X\). Find
  3. \(\mathrm { E } ( X )\),
  4. the median of \(X\).
  5. Comment on the skewness of this distribution. Give a reason for your answer.
Edexcel S2 2009 January Q1
11 marks Standard +0.3
  1. A botanist is studying the distribution of daisies in a field. The field is divided into a number of equal sized squares. The mean number of daisies per square is assumed to be 3. The daisies are distributed randomly throughout the field.
Find the probability that, in a randomly chosen square there will be
  1. more than 2 daisies,
  2. either 5 or 6 daisies. The botanist decides to count the number of daisies, \(x\), in each of 80 randomly selected squares within the field. The results are summarised below $$\sum x = 295 \quad \sum x ^ { 2 } = 1386$$
  3. Calculate the mean and the variance of the number of daisies per square for the 80 squares. Give your answers to 2 decimal places.
  4. Explain how the answers from part (c) support the choice of a Poisson distribution as a model.
  5. Using your mean from part (c), estimate the probability that exactly 4 daisies will be found in a randomly selected square.
Edexcel S2 2009 January Q2
9 marks Easy -1.2
  1. The continuous random variable \(X\) is uniformly distributed over the interval \([ - 2,7 ]\).
    1. Write down fully the probability density function \(\mathrm { f } ( x )\) of \(X\).
    2. Sketch the probability density function \(\mathrm { f } ( x )\) of \(X\).
    Find
  2. \(\mathrm { E } \left( X ^ { 2 } \right)\),
  3. \(\mathrm { P } ( - 0.2 < X < 0.6 )\).
Edexcel S2 2009 January Q3
7 marks Standard +0.3
3. A single observation \(x\) is to be taken from a Binomial distribution \(\mathrm { B } ( 20 , p )\). This observation is used to test \(\mathrm { H } _ { 0 } : p = 0.3\) against \(\mathrm { H } _ { 1 } : p \neq 0.3\)
  1. Using a \(5 \%\) level of significance, find the critical region for this test. The probability of rejecting either tail should be as close as possible to \(2.5 \%\).
  2. State the actual significance level of this test. The actual value of \(x\) obtained is 3 .
  3. State a conclusion that can be drawn based on this value giving a reason for your answer.
Edexcel S2 2009 January Q4
12 marks Moderate -0.8
4. The length of a telephone call made to a company is denoted by the continuous random variable \(T\). It is modelled by the probability density function $$\mathrm { f } ( t ) = \left\{ \begin{array} { c l } k t & 0 \leqslant t \leqslant 10 \\ 0 & \text { otherwise } \end{array} \right.$$
  1. Show that the value of \(k\) is \(\frac { 1 } { 50 }\).
  2. Find \(\mathrm { P } ( T > 6 )\).
  3. Calculate an exact value for \(\mathrm { E } ( T )\) and for \(\operatorname { Var } ( T )\).
  4. Write down the mode of the distribution of \(T\). It is suggested that the probability density function, \(\mathrm { f } ( t )\), is not a good model for \(T\).
  5. Sketch the graph of a more suitable probability density function for \(T\).