Questions — Edexcel S4 (144 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel S4 2015 June Q3
  1. As part of their research two sports science students, Ali and Bea, select a random sample of 10 adult male swimmers and a random sample of 13 adult male athletes from local sports clubs. They measure the arm span, \(x \mathrm {~cm}\), of each person selected.
    The data are summarised in the table below
\(n\)\(s ^ { 2 }\)\(\bar { x }\)
Swimmers1048195
Athletes13161186
The students know that the arm spans of adult male swimmers and of adult male athletes may each be assumed to be normally distributed.
They decide to share out the data analysis, with Ali investigating the means of the two distributions and Bea investigating the variances of the two distributions. Ali assumes that the variances of the two distributions are equal. She calculates the pooled estimate of variance, \(s _ { p } { } ^ { 2 }\)
  1. Show that \(s _ { p } { } ^ { 2 } = 112.6\) to 1 decimal place. Ali claims that there is no difference in the mean arm spans of adult male swimmers and of adult male athletes.
  2. Stating your hypotheses clearly, test this claim at the \(10 \%\) level of significance.
    (5) Bea believes that the variances of the arm spans of adult male swimmers and adult male athletes are not equal.
  3. Show that, at the \(10 \%\) level of significance, the data support Bea's belief. State your hypotheses and show your working clearly. Ali and Bea combine their work and present their results to their tutor, Clive.
  4. Explain why Clive is not happy with their research and state, with a reason, which of the tests in parts (b) and (c) is not valid.
Edexcel S4 2015 June Q4
4. A poultry farm produces eggs which are sold in boxes of 6 . The farmer believes that the proportion, \(p\), of eggs that are cracked when they are packed in the boxes is approximately 5\%. She decides to test the hypotheses $$\mathrm { H } _ { 0 } : p = 0.05 \text { against } \mathrm { H } _ { 1 } : p > 0.05$$ To test these hypotheses she randomly selects a box of eggs and rejects \(\mathrm { H } _ { 0 }\) if the box contains 2 or more eggs that are cracked. If the box contains 1 egg that is cracked, she randomly selects a second box of eggs and rejects \(\mathrm { H } _ { 0 }\) if it contains at least 1 egg that is cracked. If the first or the second box contains no cracked eggs, \(\mathrm { H } _ { 0 }\) is immediately accepted and no further boxes are sampled.
  1. Show that the power function of this test is $$1 - ( 1 - p ) ^ { 6 } - 6 p ( 1 - p ) ^ { 11 }$$
  2. Calculate the size of this test. Given that \(p = 0.1\)
  3. find the expected number of eggs inspected each time this test is carried out, giving your answer correct to 3 significant figures,
  4. calculate the probability of a Type II error. Given that \(p = 0.1\) is an unacceptably high value for the farmer,
  5. use your answer from part (d) to comment on the farmer's test.
Edexcel S4 2015 June Q5
  1. A researcher is investigating the accuracy of IQ tests. One company offers IQ tests that it claims will give any individual's IQ with a standard deviation of 5
The researcher takes these tests 9 times with the following results $$123 , \quad 118 , \quad 127 , \quad 120 , \quad 134 , \quad 120 , \quad 118 , \quad 135 , \quad 121$$
  1. Find the sample mean, \(\bar { x }\), and the sample variance, \(s ^ { 2 }\), of these scores.
    (2) Given that any individual's IQ scores on these tests are independent and have a normal distribution,
  2. use the hypotheses $$\mathrm { H } _ { 0 } : \sigma ^ { 2 } = 25 \text { against } \mathrm { H } _ { 1 } : \sigma ^ { 2 } > 25$$ to test the company's claim at the \(5 \%\) significance level.
    (4) Gurdip works for the company and has taken these IQ tests 12 times. Gurdip claims that the sample variance of these 12 scores is \(s ^ { 2 } = 8.17\)
  3. Use this value of \(s ^ { 2 }\) to calculate a \(95 \%\) confidence interval for the variance of Gurdip's IQ test scores.
    [0pt] [You may use \(\mathrm { P } \left( \chi _ { 11 } ^ { 2 } > 3.816 \right) = 0.975\) and \(\mathrm { P } \left( \chi _ { 11 } ^ { 2 } > 21.920 \right) = 0.025\) ]
  4. Assuming that \(\sigma ^ { 2 } = 25\), comment on Gurdip's claim.
Edexcel S4 2015 June Q6
6. A random sample \(X _ { 1 } , X _ { 2 } , X _ { 3 } , \ldots , X _ { 2 n }\) is taken from a population with mean \(\frac { \mu } { 3 }\) and variance \(3 \sigma ^ { 2 }\). A second random sample \(Y _ { 1 } , Y _ { 2 } , Y _ { 3 } , \ldots , Y _ { n }\) is taken from a population with mean \(\frac { \mu } { 2 }\) and variance \(\frac { \sigma ^ { 2 } } { 2 }\), where the \(X\) and \(Y\) variables are all independent.
\(A\), \(B\) and \(C\) are possible estimators of \(\mu\), where $$\begin{aligned} & A = \frac { X _ { 1 } + X _ { 2 } + X _ { 3 } + Y _ { 1 } + Y _ { 2 } } { 2 }
& B = \frac { 3 X _ { 1 } } { 2 } + \frac { 2 Y _ { 1 } } { 3 }
& C = \frac { 3 X _ { 1 } + 4 Y _ { 1 } } { 3 } \end{aligned}$$
  1. Show that two of \(A , B\) and \(C\) are unbiased estimators of \(\mu\) and find the bias of the third estimator of \(\mu\).
  2. Showing your working clearly, find which of \(A\), \(B\) and \(C\) is the best estimator of \(\mu\). The estimator $$D = \frac { 1 } { k } \left( \sum _ { i = 1 } ^ { 2 n } X _ { i } + \sum _ { i = 1 } ^ { n } Y _ { i } \right)$$ is an unbiased estimator of \(\mu\).
  3. Find \(k\) in terms of \(n\).
  4. Show that \(D\) is also a consistent estimator of \(\mu\).
  5. Find the least value of \(n\) for which \(D\) is a better estimator of \(\mu\) than any of \(A\), \(B\) or \(C\).
Edexcel S4 2016 June Q1
  1. A new diet has been designed. Its designers claim that following the diet for a month will result in a mean weight loss of more than 2 kg . In a trial, a random sample of 10 people followed the new diet for a month. Their weights, in kg, before starting the diet and their weights after following the diet for a month were recorded. The results are given in the table below.
Person\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)\(J\)
Weight before diet (kg)96110116981219198106110116
Weight after diet (kg)91101111961219190101104110
  1. Using a suitable \(t\)-test, at the \(5 \%\) level of significance, state whether or not the trial supports the designers’ claim. State your hypotheses and show your working clearly.
  2. State an assumption necessary for the test in part (a).
Edexcel S4 2016 June Q2
2. The weights of piglets at birth, \(M \mathrm {~kg}\), are normally distributed \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\) A random sample of 9 piglets is taken and their weights at birth, \(m \mathrm {~kg}\), are recorded. The results are summarised as $$\sum m = 11.6 \quad \sum m ^ { 2 } = 15.2$$ Stating your hypotheses clearly, test at the 5\% level of significance
  1. whether or not the mean weight of piglets at birth is greater than 1.2 kg ,
  2. whether or not the standard deviation of the weights of piglets at birth is different from 0.3 kg .
Edexcel S4 2016 June Q3
3. A jar contains a large number of sweets which have either soft centres or hard centres. The jar is thought to contain equal proportions of sweets with soft centres and sweets with hard centres. A random sample of 20 sweets is taken from the jar and the number of sweets with hard centres is recorded.
  1. Using a \(5 \%\) level of significance, find the critical region for a two-tailed test of the hypothesis that there are equal proportions of sweets with soft centres and sweets with hard centres in the jar.
  2. Calculate the probability of a Type I error for this test. Given that there are 3 times as many sweets with soft centres as there are sweets with hard centres,
  3. calculate the probability of a Type II error for this test.
Edexcel S4 2016 June Q4
  1. A manufacturer produces boxes of screws containing short screws and long screws. The manufacturer claims that the probability, \(p\), of a randomly selected screw being long, is 0.5
A shopkeeper does not believe the manufacturer's claim. He designs two tests, \(A\) and \(B\), to test the hypotheses \(\mathrm { H } _ { 0 } : p = 0.5\) and \(\mathrm { H } _ { 1 } : p < 0.5\) In test \(A\), a random sample of 10 screws is taken from a box of screws and \(\mathrm { H } _ { 0 }\) is rejected if there are fewer than 3 long screws. In test \(B\), a random sample of 5 screws is taken from a box of screws and \(\mathrm { H } _ { 0 }\) is rejected if there are no long screws, otherwise a second random sample of 5 screws is taken from a box of screws. If there are no long screws in this second sample \(\mathrm { H } _ { 0 }\) is rejected, otherwise it is accepted.
  1. Find the size of test \(A\).
  2. Find the size of test \(B\).
  3. Find an expression for the power function of test \(B\) in terms of \(p\). Some values, to 2 decimal places, of the power function for test \(A\) and the power function for test \(B\) are given in the table below.
    \(p\)0.10.20.30.4
    Power test \(A\)0.93\(r\)0.380.17
    Power test \(B\)0.830.550.310.15
  4. Find the value of \(r\). The shopkeeper believes that the value of \(p\) is less than 0.4
  5. Suggest which of the tests the shopkeeper should use. Give a reason for your answer.
Edexcel S4 2016 June Q5
5. Fire brigades in cities \(X\) and \(Y\) are in similar locations. The response times, in minutes, during a particular month, for randomly selected calls are summarised in the table below.
\cline { 2 - 4 } \multicolumn{1}{c|}{}Sample sizeSample mean
Standard deviation
\(S\)
\(X\)914.86.76
\(Y\)67.25.42
You may assume that the response times are from independent normal distributions.
Stating your hypotheses and showing your working clearly
  1. test, at the \(10 \%\) level of significance, whether or not the variances of the populations from which the response times are drawn are the same,
    (5)
  2. test, at the \(5 \%\) level of significance, whether or not the mean response time for the fire brigade in city \(X\) is more than 5 minutes longer than the mean response time for the fire brigade in city \(Y\).
  3. Explain why your result in part (a) enables you to carry out the test in part (b).
Edexcel S4 2016 June Q6
6. A random sample of size \(n\) is taken from the random variable \(X\), which has a continuous uniform distribution over the interval [ \(0 , a\) ], \(a > 0\) The sample mean is denoted by \(\bar { X }\)
  1. Show that \(Y = 2 \bar { X }\) is an unbiased estimator of \(a\) The maximum value, \(M\), in the sample has probability density function $$f ( m ) = \left\{ \begin{array} { c c } \frac { n m ^ { n - 1 } } { a ^ { n } } & 0 \leqslant m \leqslant a
    0 & \text { otherwise } \end{array} \right.$$
  2. Find E(M)
  3. Show that \(\operatorname { Var } ( M ) = \frac { n a ^ { 2 } } { ( n + 2 ) ( n + 1 ) ^ { 2 } }\) The estimator \(S\) is defined by \(S = \frac { n + 1 } { n } M\)
    Given that \(n > 1\)
  4. state which of \(Y\) or \(S\) is the better estimator for \(a\). Give a reason for your answer.
Edexcel S4 2016 June Q7
7. The times taken to travel to school by sixth form students are normally distributed. A head teacher records the times taken to travel to school, in minutes, of a random sample of 10 sixth form students from her school. Based on this sample, the \(95 \%\) confidence interval for the mean time taken to travel to school for sixth form students from her school is
[0pt] [28.5, 48.7] Calculate a 99\% confidence interval for the variance of the time taken to travel to school for sixth form students from her school.
(9)
Edexcel S4 2017 June Q1
  1. The times taken by children to run 150 m are normally distributed. The times taken, \(x\) seconds, by a random sample of 9 boys and an independent random sample of 6 girls are recorded. The following statistics are obtained.
Number of childrenSample mean \(\bar { x }\)\(\sum x ^ { 2 }\)
Boys922.84693.60
Girls629.55236.12
  1. Test, at the \(10 \%\) level of significance, whether or not the variances of the two distributions are equal. State your hypotheses clearly. The Headteacher claims that the mean time taken for the girls is more than 5 seconds greater than the mean time taken for the boys.
  2. Stating your hypotheses clearly, test the Headteacher's claim. Use a \(1 \%\) level of significance and show your working clearly.
Edexcel S4 2017 June Q2
  1. The number of accidents per year in Daftstown follows a Poisson distribution with mean \(\lambda\). The value of \(\lambda\) has previously been 6 but Jonty claims that since the Council increased the speed limit, the value of \(\lambda\) has increased.
Jonty records the number of accidents in Daftstown in the first year after the speed limit was increased. He plans to test, at the \(5 \%\) significance level, whether or not there is evidence of an increase in the mean number of accidents in Daftstown per year.
  1. Stating your hypotheses clearly, calculate the probability of a Type I error for this test. Given that there were 9 accidents in the first year after the speed limit was increased,
  2. state, giving a reason, whether or not there is evidence to support Jonty's claim.
  3. Given that the value of \(\lambda\) has actually increased to 8, calculate the probability of drawing the conclusion, using this test, that the number of accidents per year in Daftstown has not increased.
Edexcel S4 2017 June Q3
3. The lengths, \(X \mathrm {~mm}\), of the wings of adult blackbirds follow a normal distribution. A random sample of 5 adult blackbirds is taken and the lengths of the wings are measured. The results are summarised below $$\sum x = 655 \text { and } \sum x ^ { 2 } = 85845$$
  1. Test, at the \(10 \%\) level of significance, whether or not the mean length of an adult blackbird's wing is less than 135 mm . State your hypotheses clearly.
  2. Find the \(90 \%\) confidence interval for the variance of the lengths of adult blackbirds' wings. Show your working clearly.
Edexcel S4 2017 June Q4
4. A coach believes that the average score in the final round of a golf tournament is more than one point below the average score in the first round. To test this belief, the scores of 8 randomly selected players are recorded. The results are given in the table below.
Player\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)
First round7680727883888172
Final round7078757579848369
    1. State why a paired \(t\)-test is suitable for use with these data.
    2. State an assumption that needs to be made in order to carry out a paired \(t\)-test in this case.
  1. Test, at the \(5 \%\) level of significance, whether or not there is evidence to support the coach's belief. Show your working clearly.
  2. Explain, in the context of the coach's belief, what a Type II error would be in this case.
Edexcel S4 2017 June Q5
  1. Jamland and Goodjam are two suppliers of jars of jam. The weights of the jars of jam produced by each supplier can be assumed to be normally distributed with unknown, but equal, variances. A random sample of 20 jars of jam is taken from those supplied by Jamland.
Based on this sample, the 95\% confidence interval for the mean weight of a jar of Jamland jam, in grams, is
[0pt] [ 492, 507 ] A random sample of 10 jars of jam is selected from those supplied by Goodjam. The weight of each jar of Goodjam jam, \(y\) grams, is recorded. The results are summarised as follows $$\bar { y } = 480 \quad s _ { y } ^ { 2 } = 280$$ Find a 90\% confidence interval for the value by which the mean weight of a jar of jam supplied by Jamland exceeds the mean weight of a jar of jam supplied by Goodjam.
Edexcel S4 2017 June Q6
6. The independent random variables \(X _ { 1 }\) and \(X _ { 2 }\) are each distributed \(\mathrm { B } ( n , p )\), where \(n > 1\) An unbiased estimator for \(p\) is given by $$\hat { p } = \frac { a X _ { 1 } + b X _ { 2 } } { n }$$ where \(a\) and \(b\) are constants.
[0pt] [You may assume that if \(X _ { 1 }\) and \(X _ { 2 }\) are independent then \(\mathrm { E } \left( X _ { 1 } X _ { 2 } \right) = \mathrm { E } \left( X _ { 1 } \right) \mathrm { E } \left( X _ { 2 } \right)\) ]
  1. Show that \(a + b = 1\)
  2. Show that \(\operatorname { Var } ( \hat { p } ) = \frac { \left( 2 a ^ { 2 } - 2 a + 1 \right) p ( 1 - p ) } { n }\)
  3. Hence, justifying your answer, determine the value of \(a\) and the value of \(b\) for which \(\hat { p }\) has minimum variance.
    1. Show that \(\hat { p } ^ { 2 }\) is a biased estimator for \(p ^ { 2 }\)
    2. Show that the bias \(\rightarrow 0\) as \(n \rightarrow \infty\)
  4. By considering \(\mathrm { E } \left[ X _ { 1 } \left( X _ { 1 } - 1 \right) \right]\) find an unbiased estimator for \(p ^ { 2 }\)
Edexcel S4 2018 June Q1
  1. A machine fills packets with almonds. The weight, in grams, of almonds in a packet is modelled by \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). To check that the machine is working properly, a random sample of 10 packets is selected and unbiased estimates for \(\mu\) and \(\sigma ^ { 2 }\) are
$$\bar { x } = 202 \quad \text { and } \quad s ^ { 2 } = 3.6$$ Stating your hypotheses clearly, test, at the \(1 \%\) level of significance, whether or not the mean weight of almonds in a packet is more than 200 g .
Edexcel S4 2018 June Q2
  1. Jeremiah currently uses a Fruity model of juicer. He agrees to trial a new model of juicer, Zesty. The amounts of juice extracted, \(x \mathrm { ml }\), from each of 9 randomly selected oranges, using the Zesty are summarised as
$$\sum x = 468 \quad \sum x ^ { 2 } = 24560$$ Given that the amounts of juice extracted follow a normal distribution,
  1. calculate a 95\% confidence interval for
    1. the mean amount of juice extracted from an orange using the Zesty,
    2. the standard deviation of the amount of juice extracted from an orange using the Zesty. Jeremiah knows that, for his Fruity, the mean amount of juice extracted from an orange is 38 ml and the standard deviation of juice extracted from an orange is 5 ml . He decides that he will replace his Fruity with a Zesty if both
      • the mean for the Zesty is more than \(20 \%\) higher than the mean for his Fruity and
  2. the standard deviation for the Zesty is less than 5.5 ml .
  3. Using your answers to part (a), explain whether or not Jeremiah should replace his Fruity with the Zesty.
Edexcel S4 2018 June Q3
  1. A random sample of 8 students is selected from a school database.
Each student's reaction time is measured at the start of the school day and again at the end of the school day. The reaction times, in milliseconds, are recorded below.
StudentA\(B\)CD\(E\)\(F\)G\(H\)
Reaction time at the start of the school day10.87.28.76.89.410.911.17.6
Reaction time at the end of the school day106.18.85.78.78.19.86.8
  1. State one assumption that needs to be made in order to carry out a paired \(t\)-test.
    (1) The random variable \(R\) is the reaction time at the start of the school day minus the reaction time at the end of the school day. The mean of \(R\) is \(\mu\). John uses a paired \(t\)-test to test the hypotheses $$\mathrm { H } _ { 0 } : \mu = m \quad \mathrm { H } _ { 1 } : \mu \neq m$$ Given that \(\mathrm { H } _ { 0 }\) is rejected at the 5\% level of significance but accepted at the 1\% level of significance,
  2. find the ranges of possible values for \(m\).
Edexcel S4 2018 June Q4
  1. A glue supplier claims that Goglue is stronger than Tackfast. A company is presently using Tackfast but agrees to change to Goglue if, at the 5\% significance level,
  • the standard deviation of the force required for Goglue to fail is not greater than the standard deviation of the force required for Tackfast to fail and
  • the mean force required for Goglue to fail is more than 4 newtons greater than the mean force for Tackfast to fail.
A series of trials is carried out, using Goglue and Tackfast, and the glues are tested to destruction. The force, \(x\) newtons, at which each glue fails is recorded.
Sample size \(( n )\)Sample mean \(( \bar { x } )\)Standard deviation \(( s )\)
Tackfast \(( T )\)65.270.31
Goglue \(( G )\)510.120.66
It can be assumed that the force at which each glue fails is normally distributed.
  1. Test, at the \(5 \%\) level of significance, whether or not there is evidence that the standard deviation of the force required for Goglue to fail is greater than the standard deviation of the force required for the Tackfast to fail. State your hypotheses clearly. The supplier claims that the mean force required for its Goglue to fail is more than 4 newtons greater than the mean force required for Tackfast to fail.
  2. Stating your hypotheses clearly and using a \(5 \%\) level of significance, test the supplier's claim.
  3. Show that, at the \(5 \%\) level of significance, the supplier's claim will be accepted if \(\bar { X } _ { G } - \bar { X } _ { T } > 4.55\), where \(\bar { X } _ { G }\) and \(\bar { X } _ { T }\) are the mean forces required for Goglue to fail and Tackfast to fail respectively. Later, it was found that an error had been made when recording the results for Goglue. This resulted in all the forces recorded for Goglue being 0.5 newtons more than they should have been. The results for Tackfast were correct.
  4. Explain whether or not this information affects the decision about which glue the supplier decides to use.
Edexcel S4 2018 June Q5
  1. A machine makes posts. The length of a post is normally distributed with unknown mean \(\mu\) and standard deviation 4 cm .
A random sample of size \(n\) is taken to test, at the \(5 \%\) significance level, the hypotheses $$\mathrm { H } _ { 0 } : \mu = 150 \quad \mathrm { H } _ { 1 } : \mu > 150$$
  1. State the probability of a Type I error for this test. The manufacturer requires the probability of a Type II error to be less than 0.1 when the actual value of \(\mu\) is 152
  2. Calculate the minimum value of \(n\).
Edexcel S4 2018 June Q6
  1. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\)
$$f ( x ) = \left\{ \begin{array} { c c } \frac { x } { 2 \theta ^ { 2 } } & 0 \leqslant x \leqslant 2 \theta
0 & \text { otherwise } \end{array} \right.$$ where \(\theta\) is a constant.
  1. Use integration to show that \(\mathrm { E } \left( X ^ { N } \right) = \frac { 2 ^ { N + 1 } } { N + 2 } \theta ^ { N }\)
  2. Hence
    1. write down an expression for \(\mathrm { E } ( X )\) in terms of \(\theta\)
    2. find \(\operatorname { Var } ( X )\) in terms of \(\theta\) A random sample \(X _ { 1 } , X _ { 2 } , \ldots , X _ { n }\) where \(n \geqslant 2\) is taken to estimate the value of \(\theta\) The random variable \(S _ { 1 } = q \bar { X }\) is an unbiased estimator of \(\theta\)
  3. Write down the value of \(q\) and show that \(S _ { 1 }\) is a consistent estimator of \(\theta\) The continuous random variable \(Y\) is independent of \(X\) and is uniformly distributed over the interval \(\left[ 0 , \frac { 2 \theta } { 3 } \right]\), where \(\theta\) is the same unknown constant as in \(\mathrm { f } ( x )\). The random variable \(S _ { 2 } = a X + b Y\) is an unbiased estimator of \(\theta\) and is based on one observation of \(X\) and one observation of \(Y\).
  4. Find the value of \(a\) and the value of \(b\) for which \(S _ { 2 }\) has minimum variance.
  5. Show that the minimum variance of \(S _ { 2 }\) is \(\frac { \theta ^ { 2 } } { 11 }\)
  6. Explain which of \(S _ { 1 }\) or \(S _ { 2 }\) is the better estimator for \(\theta\)
Edexcel S4 Q1
  1. The weights of the contents of jars of jam are normally distributed with a stated mean of 100 g . A random sample of 7 jars was taken and the contents of each jar, \(x\) grams, was weighed. The results are summarised by the following statistics.
$$\sum x = 710.9 , \sum x ^ { 2 } = 72219.45 .$$ Test at the \(5 \%\) level of significance whether or not there is evidence that the mean weight of the contents of the jars is greater than 100 g . State your hypotheses clearly.
(8 marks)
Edexcel S4 Q2
2. An engineer decided to investigate whether or not the strength of rope was affected by water. A random sample of 9 pieces of rope was taken and each piece was cut in half. One half of each piece was soaked in water over night, and then each piece of rope was tested to find its strength. The results, in coded units, are given in the table below
Rope no.123456789
Dry rope9.78.56.38.37.25.46.88.15.9
Wet rope9.19.58.29.78.54.98.48.77.7
Assuming that the strength of rope follows a normal distribution, test whether or not there is any difference between the mean strengths of dry and wet rope. State your hypotheses clearly and use a \(1 \%\) level of significance.
(8 marks)