Questions — Edexcel C4 (360 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C4 Q7
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{a1b078fe-96e3-4d62-bf0d-415294ba022f-6_805_1445_269_230}
\end{figure} The curve \(C\) with equation \(y = 2 \mathrm { e } ^ { x } + 5\) meets the \(y\)-axis at the point \(M\), as shown in Fig. 3 .
  1. Find the equation of the normal to \(C\) at \(M\) in the form \(a x + b y = c\), where \(a , b\) and \(c\) are integers. This normal to \(C\) at \(M\) crosses the \(x\)-axis at the point \(N ( n , 0 )\).
  2. Show that \(n = 14\). The point \(P ( \ln 4,13 )\) lies on \(C\). The finite region \(R\) is bounded by \(C\), the axes and the line \(P N\), as shown in Fig. 3.
  3. Find the area of \(R\), giving your answers in the form \(p + q \ln 2\), where \(p\) and \(q\) are integers to be found.
Edexcel C4 Q8
8. Referred to an origin \(O\), the points \(A , B\) and \(C\) have position vectors ( \(9 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) ), \(( 6 \mathbf { i } + 2 \mathbf { j } + 6 \mathbf { k } )\) and \(( 3 \mathbf { i } + p \mathbf { j } + q \mathbf { k } )\) respectively, where \(p\) and \(q\) are constants.
  1. Find, in vector form, an equation of the line \(l\) which passes through \(A\) and \(B\). Given that \(C\) lies on \(l\),
  2. find the value of \(p\) and the value of \(q\),
  3. calculate, in degrees, the acute angle between \(O C\) and \(A B\). The point \(D\) lies on \(A B\) and is such that \(O D\) is perpendicular to \(A B\).
  4. Find the position vector of \(D\).
Edexcel C4 Q1
  1. A curve has the equation
$$x ^ { 2 } ( 2 + y ) - y ^ { 2 } = 0 .$$ Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
Edexcel C4 Q2
2. $$f ( x ) = \frac { 3 } { \sqrt { 1 - x } } , | x | < 1$$
  1. Show that \(\mathrm { f } \left( \frac { 1 } { 10 } \right) = \sqrt { 10 }\).
  2. Expand \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
  3. Use your expansion to find an approximate value for \(\sqrt { 10 }\), giving your answer to 8 significant figures.
  4. Find, to 1 significant figure, the percentage error in your answer to part (c).
Edexcel C4 Q3
3. Relative to a fixed origin, \(O\), the line \(l\) has the equation $$\mathbf { r } = ( \mathbf { i } + p \mathbf { j } - 5 \mathbf { k } ) + \lambda ( 3 \mathbf { i } - \mathbf { j } + q \mathbf { k } ) ,$$ where \(p\) and \(q\) are constants and \(\lambda\) is a scalar parameter.
Given that the point \(A\) with coordinates \(( - 5,9 , - 9 )\) lies on \(l\),
  1. find the values of \(p\) and \(q\),
  2. show that the point \(B\) with coordinates \(( 25 , - 1,11 )\) also lies on \(l\). The point \(C\) lies on \(l\) and is such that \(O C\) is perpendicular to \(l\).
  3. Find the coordinates of \(C\).
  4. Find the ratio \(A C : C B\)
    3. continued
Edexcel C4 Q4
4. During a chemical reaction, a compound is being made from two other substances. At time \(t\) hours after the start of the reaction, \(x \mathrm {~g}\) of the compound has been produced. Assuming that \(x = 0\) initially, and that $$\frac { \mathrm { d } x } { \mathrm {~d} t } = 2 ( x - 6 ) ( x - 3 )$$
  1. show that it takes approximately 7 minutes to produce 2 g of the compound.
  2. Explain why it is not possible to produce 3 g of the compound.
    4. continued
Edexcel C4 Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e877dc80-4cfc-4c8b-9640-9b186cd7ab13-08_617_917_146_475} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = 4 x ^ { \frac { 1 } { 2 } } \mathrm { e } ^ { - x }\).
The shaded region is bounded by the curve, the \(x\)-axis and the line \(x = 2\).
  1. Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region. The shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Find, in terms of \(\pi\) and e, the exact volume of the solid formed.
    5. continued
Edexcel C4 Q6
6. (a) Find $$\int 2 \sin 3 x \sin 2 x d x$$ (b) Use the substitution \(u ^ { 2 } = x + 1\) to evaluate $$\int _ { 0 } ^ { 3 } \frac { x ^ { 2 } } { \sqrt { x + 1 } } \mathrm {~d} x$$ 6. continued
Edexcel C4 Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e877dc80-4cfc-4c8b-9640-9b186cd7ab13-12_556_860_246_452} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve with parametric equations $$x = \cos 2 t , \quad y = \operatorname { cosec } t , \quad 0 < t < \frac { \pi } { 2 } .$$ The point \(P\) on the curve has \(x\)-coordinate \(\frac { 1 } { 2 }\).
  1. Find the value of the parameter \(t\) at \(P\).
  2. Show that the tangent to the curve at \(P\) has the equation $$y = 2 x + 1$$ The shaded region is bounded by the curve, the coordinate axes and the line \(x = \frac { 1 } { 2 }\).
  3. Show that the area of the shaded region is given by $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } k \cos t \mathrm {~d} t$$ where \(k\) is a positive integer to be found.
  4. Hence find the exact area of the shaded region.
    7. continued
    7. continued
Edexcel C4 Q1
  1. Use integration by parts to find
$$\int x ^ { 2 } \sin x d x$$
Edexcel C4 Q2
  1. Given that \(y = - 2\) when \(x = 1\), solve the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = y ^ { 2 } \sqrt { x }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel C4 Q3
3. A curve has the equation $$4 x ^ { 2 } - 2 x y - y ^ { 2 } + 11 = 0$$ Find an equation for the normal to the curve at the point with coordinates \(( - 1 , - 3 )\). (8)
3. continued
Edexcel C4 Q4
4. (a) Expand \(( 1 + a x ) ^ { - 3 } , | a x | < 1\), in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\). Give each coefficient as simply as possible in terms of the constant \(a\). Given that the coefficient of \(x ^ { 2 }\) in the expansion of \(\frac { 6 - x } { ( 1 + a x ) ^ { 3 } } , | a x | < 1\), is 3 ,
(b) find the two possible values of \(a\). Given also that \(a < 0\),
(c) show that the coefficient of \(x ^ { 3 }\) in the expansion of \(\frac { 6 - x } { ( 1 + a x ) ^ { 3 } }\) is \(\frac { 14 } { 9 }\).
4. continued
Edexcel C4 Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b71c9832-e502-4a25-85fb-a49c03ea9209-08_663_899_146_495} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \frac { 1 } { \sqrt { 3 x + 1 } }\).
The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 5\).
  1. Find the area of the shaded region. The shaded region is rotated completely about the \(x\)-axis.
  2. Find the volume of the solid formed, giving your answer in the form \(k \pi \ln 2\), where \(k\) is a simplified fraction.
    5. continued
Edexcel C4 Q6
6. $$f ( x ) = \frac { 15 - 17 x } { ( 2 + x ) ( 1 - 3 x ) ^ { 2 } } , \quad x \neq - 2 , \quad x \neq \frac { 1 } { 3 }$$
  1. Find the values of the constants \(A , B\) and \(C\) such that $$\mathrm { f } ( x ) = \frac { A } { 2 + x } + \frac { B } { 1 - 3 x } + \frac { C } { ( 1 - 3 x ) ^ { 2 } }$$
  2. Find the value of $$\int _ { - 1 } ^ { 0 } f ( x ) d x$$ giving your answer in the form \(p + \ln q\), where \(p\) and \(q\) are integers.
    6. continued
Edexcel C4 Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b71c9832-e502-4a25-85fb-a49c03ea9209-12_495_784_246_461} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve with parametric equations $$x = - 1 + 4 \cos \theta , \quad y = 2 \sqrt { 2 } \sin \theta , \quad 0 \leq \theta < 2 \pi$$ The point \(P\) on the curve has coordinates \(( 1 , \sqrt { 6 } )\).
  1. Find the value of \(\theta\) at \(P\).
  2. Show that the normal to the curve at \(P\) passes through the origin.
  3. Find a cartesian equation for the curve.
    7. continued
Edexcel C4 Q8
8. The line \(l _ { 1 }\) passes through the points \(A\) and \(B\) with position vectors \(( - 3 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } )\) and ( \(7 \mathbf { i } - \mathbf { j } + 12 \mathbf { k }\) ) respectively, relative to a fixed origin.
  1. Find a vector equation for \(l _ { 1 }\). The line \(l _ { 2 }\) has the equation $$\mathbf { r } = ( 5 \mathbf { j } - 7 \mathbf { k } ) + \mu ( \mathbf { i } - 2 \mathbf { j } + 7 \mathbf { k } )$$ The point \(C\) lies on \(l _ { 2 }\) and is such that \(A C\) is perpendicular to \(B C\).
  2. Show that one possible position vector for \(C\) is \(( \mathbf { i } + 3 \mathbf { j } )\) and find the other. Assuming that \(C\) has position vector \(( \mathbf { i } + 3 \mathbf { j } )\),
  3. find the area of triangle \(A B C\), giving your answer in the form \(k \sqrt { 5 }\).
    8. continued
    8. continued
Edexcel C4 Q1
  1. Use integration by parts to show that
$$\int _ { 1 } ^ { 2 } x \ln x \mathrm {~d} x = 2 \ln 2 - \frac { 3 } { 4 }$$
Edexcel C4 Q2
  1. (a) Use the trapezium rule with two intervals of equal width to find an approximate value for the integral
$$\int _ { 0 } ^ { 2 } \arctan x \mathrm {~d} x$$ (b) Use the trapezium rule with four intervals of equal width to find an improved approximation for the value of the integral.
Edexcel C4 Q3
3. A curve has the equation $$3 x ^ { 2 } - 2 x + x y + y ^ { 2 } - 11 = 0$$ The point \(P\) on the curve has coordinates \(( - 1,3 )\).
  1. Show that the normal to the curve at \(P\) has the equation \(y = 2 - x\).
  2. Find the coordinates of the point where the normal to the curve at \(P\) meets the curve again.
    3. continued
Edexcel C4 Q4
4. The points \(A\) and \(B\) have coordinates \(( 3,9 , - 7 )\) and \(( 13 , - 6 , - 2 )\) respectively.
  1. Find, in vector form, an equation for the line \(l\) which passes through \(A\) and \(B\).
  2. Show that the point \(C\) with coordinates \(( 9,0 , - 4 )\) lies on \(l\). The point \(D\) is the point on \(l\) closest to the origin, \(O\).
  3. Find the coordinates of \(D\).
  4. Find the area of triangle \(O A B\) to 3 significant figures.
    4. continued
Edexcel C4 Q5
5. A bath is filled with hot water which is allowed to cool. The temperature of the water is \(\theta ^ { \circ } \mathrm { C }\) after cooling for \(t\) minutes and the temperature of the room is assumed to remain constant at \(20 ^ { \circ } \mathrm { C }\). Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,
  1. write down a differential equation connecting \(\theta\) and \(t\). Given also that the temperature of the water is initially \(37 ^ { \circ } \mathrm { C }\) and that it is \(36 ^ { \circ } \mathrm { C }\) after cooling for four minutes,
  2. find, to 3 significant figures, the temperature of the water after ten minutes. Advice suggests that the temperature of the water should be allowed to cool to \(33 ^ { \circ } \mathrm { C }\) before a child gets in.
  3. Find, to the nearest second, how long a child should wait before getting into the bath.
    5. continued
Edexcel C4 Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f2d48ab-1f61-4fb9-b35a-25d684dbd50f-10_454_602_255_479} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with parametric equations $$x = 3 \sin t , \quad y = 2 \sin 2 t , \quad 0 \leq t < \pi .$$ The curve meets the \(x\)-axis at the origin, \(O\), and at the point \(A\).
  1. Find the value of \(t\) at \(O\) and the value of \(t\) at \(A\). The region enclosed by the curve is rotated through \(\pi\) radians about the \(x\)-axis.
  2. Show that the volume of the solid formed is given by $$\int _ { 0 } ^ { \frac { \pi } { 2 } } 12 \pi \sin ^ { 2 } 2 t \cos t \mathrm {~d} t$$
  3. Using the substitution \(u = \sin t\), or otherwise, evaluate this integral, giving your answer as an exact multiple of \(\pi\).
    6. continued
Edexcel C4 Q7
7. $$f ( x ) = \frac { 8 - x } { ( 1 + x ) ( 2 - x ) } , \quad | x | < 1$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x = \ln k$$ where \(k\) is an integer to be found.
  3. Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
    7. continued
    7. continued
Edexcel C4 Q1
  1. (a) Find the binomial expansion of \(( 2 - 3 x ) ^ { - 3 }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
    (b) State the set of values of \(x\) for which your expansion is valid.
  2. A curve has the equation
$$x ^ { 2 } + 3 x y - 2 y ^ { 2 } + 17 = 0$$ (a) Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
(b) Find an equation for the normal to the curve at the point \(( 3 , - 2 )\).