Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2023 November Q4
4
  1. Sketch, on the same diagram, the graphs of \(y = | 3 x - 5 |\) and \(y = 2 x + 7\).
  2. Solve the equation \(| 3 x - 5 | = 2 x + 7\).
  3. Hence solve the equation \(\left| 3 ^ { y + 1 } - 5 \right| = 2 \times 3 ^ { y } + 7\), giving your answer correct to 3 significant figures.
CAIE P2 2023 November Q5
5 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = 6 x ^ { 3 } + a x ^ { 2 } + b x - 20$$ where \(a\) and \(b\) are constants. It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\) and that the remainder is - 11 when \(\mathrm { p } ( x )\) is divided by \(( x + 1 )\).
  1. Find the values of \(a\) and \(b\).
  2. Hence factorise \(\mathrm { p } ( x )\), and determine the exact roots of the equation \(\mathrm { p } ( 3 x ) = 0\).
CAIE P2 2023 November Q6
6
  1. Show that \(\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \equiv 4 + 6 \cos \theta - 4 \cos ^ { 2 } \theta\).
  2. Solve the equation $$\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) + 3 = 0$$ for \(- \pi < \theta < 0\).
  3. Find \(\int \operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \mathrm { d } \theta\).
CAIE P2 2023 November Q7
7 The curve with equation \(\mathrm { e } ^ { 2 x } - 18 x + y ^ { 3 } + y = 11\) has a stationary point at \(( p , q )\).
  1. Find the exact value of \(p\).
  2. Show that \(q = \sqrt [ 3 ] { 2 + 18 \ln 3 - q }\).
  3. Show by calculation that the value of \(q\) lies between 2.5 and 3.0.
  4. Use an iterative formula, based on the equation in (b), to find the value of \(q\) correct to 4 significant figures. Give the result of each iteration to 6 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2013 June Q1
1 Find the area of the region enclosed by the curve with polar equation \(r = 2 ( 1 + \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\).
CAIE FP1 2013 June Q2
2 Prove by mathematical induction that \(5 ^ { 2 n } - 1\) is divisible by 8 for every positive integer \(n\).
CAIE FP1 2013 June Q3
3 The cubic equation \(x ^ { 3 } - 2 x ^ { 2 } - 3 x + 4 = 0\) has roots \(\alpha , \beta , \gamma\). Given that \(c = \alpha + \beta + \gamma\), state the value of \(c\). Use the substitution \(y = c - x\) to find a cubic equation whose roots are \(\alpha + \beta , \beta + \gamma , \gamma + \alpha\). Find a cubic equation whose roots are \(\frac { 1 } { \alpha + \beta } , \frac { 1 } { \beta + \gamma } , \frac { 1 } { \gamma + \alpha }\). Hence evaluate \(\frac { 1 } { ( \alpha + \beta ) ^ { 2 } } + \frac { 1 } { ( \beta + \gamma ) ^ { 2 } } + \frac { 1 } { ( \gamma + \alpha ) ^ { 2 } }\).
CAIE FP1 2013 June Q4
4 Let \(I _ { n } = \int _ { 0 } ^ { 1 } \frac { 1 } { \left( 1 + x ^ { 2 } \right) ^ { n } } \mathrm {~d} x\). Prove that, for every positive integer \(n\), $$2 n I _ { n + 1 } = 2 ^ { - n } + ( 2 n - 1 ) I _ { n }$$ Given that \(I _ { 1 } = \frac { 1 } { 4 } \pi\), find the exact value of \(I _ { 3 }\).
CAIE FP1 2013 June Q5
5 Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } = \frac { 1 } { 6 } - \frac { 1 } { 2 ( 2 N + 3 ) }\). Deduce that \(\sum _ { r = N + 1 } ^ { 2 N } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) } < \frac { 1 } { 8 N }\).
CAIE FP1 2013 June Q6
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { l l l } 4 & - 5 & 3 \\ 3 & - 4 & 3 \\ 1 & - 1 & 2 \end{array} \right)$$ Show that \(\mathbf { e } = \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue. Find the other two eigenvalues of \(\mathbf { A }\). The matrix \(\mathbf { B }\) is given by $$\mathbf { B } = \left( \begin{array} { r r r } - 1 & 4 & 0 \\ - 1 & 3 & 1 \\ 1 & - 1 & 3 \end{array} \right)$$ Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { B }\) and deduce an eigenvector of the matrix \(\mathbf { A B }\), stating the corresponding eigenvalue.
CAIE FP1 2013 June Q7
7 By considering the binomial expansion of \(\left( z - \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), express \(\sin ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } \theta \mathrm {~d} \theta\).
CAIE FP1 2013 June Q8
8 The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\) respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & - 2 & 3 & 5 \\ 3 & - 4 & 17 & 33 \\ 5 & - 9 & 20 & 36 \\ 4 & - 7 & 16 & 29 \end{array} \right) \quad \text { and } \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & - 3 \\ 2 & - 1 & 0 & 0 \\ 4 & - 7 & 1 & - 9 \\ 6 & - 10 & 0 & - 14 \end{array} \right) .$$ The null spaces of \(\mathrm { T } _ { 1 }\) and \(\mathrm { T } _ { 2 }\) are denoted by \(K _ { 1 }\) and \(K _ { 2 }\) respectively. Find a basis for \(K _ { 1 }\) and a basis for \(K _ { 2 }\). It is given that \(\mathbf { a } = \left( \begin{array} { l } 1 \\ 2 \\ 3 \\ 4 \end{array} \right)\). The vectors \(\mathbf { x } _ { 1 }\) and \(\mathbf { x } _ { 2 }\) are such that \(\mathbf { M } _ { 1 } \mathbf { x } _ { 1 } = \mathbf { M } _ { 1 } \mathbf { a }\) and \(\mathbf { M } _ { 2 } \mathbf { x } _ { 2 } = \mathbf { M } _ { 2 } \mathbf { a }\). Given that \(\mathbf { x } _ { 1 } - \mathbf { x } _ { 2 } = \left( \begin{array} { c } p \\ 5 \\ 7 \\ q \end{array} \right)\), find \(p\) and \(q\).
CAIE FP1 2013 June Q9
9 Find \(x\) in terms of \(t\) given that $$4 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 6 \mathrm { e } ^ { - 2 t }$$ and that, when \(t = 0 , x = \frac { 5 } { 3 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 7 } { 6 }\). State \(\lim _ { t \rightarrow \infty } x\).
CAIE FP1 2013 June Q10
10 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - 3 x - 2 } { x ^ { 2 } - 2 x + 1 }\). State the equations of the asymptotes of \(C\). Show that \(y \leqslant \frac { 25 } { 12 }\) at all points of \(C\). Find the coordinates of any stationary points of \(C\). Sketch \(C\), stating the coordinates of any intersections of \(C\) with the coordinate axes and the asymptotes.
CAIE FP1 2013 June Q11 EITHER
The curve \(C\) has equation \(y = 2 \sec x\), for \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\). Show that the arc length \(s\) of \(C\) is given by $$S = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 2 } x - 1 \right) d x$$ Find the exact value of \(s\). The surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\). Show that
  1. \(S = 4 \pi \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( 2 \sec ^ { 3 } x - \sec x \right) \mathrm { d } x\),
  2. \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x \tan x ) = 2 \sec ^ { 3 } x - \sec x\). Hence find the exact value of \(S\).
CAIE FP1 2013 June Q11 OR
The points \(A , B , C\) and \(D\) have coordinates as follows: $$A ( 2,1 , - 2 ) , \quad B ( 4,1 , - 1 ) , \quad C ( 3 , - 2 , - 1 ) \quad \text { and } \quad D ( 3,6,2 ) .$$ The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(C\). Find a cartesian equation of \(\Pi _ { 1 }\). Find the area of triangle \(A B C\) and hence, or otherwise, find the volume of the tetrahedron \(A B C D\).
[0pt] [The volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.]
The plane \(\Pi _ { 2 }\) passes through the points \(A , B\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2014 June Q1
1 The equation \(x ^ { 3 } + p x + q = 0\), where \(p\) and \(q\) are constants, with \(q \neq 0\), has one root which is the reciprocal of another root. Prove that \(p + q ^ { 2 } = 1\).
CAIE FP1 2014 June Q2
2 Expand and simplify \(( r + 1 ) ^ { 4 } - r ^ { 4 }\). Use the method of differences together with the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$
CAIE FP1 2014 June Q3
3 Prove by mathematical induction that, for all non-negative integers \(n\), $$11 ^ { 2 n } + 25 ^ { n } + 22$$ is divisible by 24 .
CAIE FP1 2014 June Q4
4 Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 25 x = 195 \sin 2 t$$
CAIE FP1 2014 June Q5
5 The curve \(C\) has polar equation \(r = a ( 1 + \sin \theta )\), where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\). Draw a sketch of \(C\). Find the exact value of the area of the region enclosed by \(C\) and the half-lines \(\theta = \frac { 1 } { 3 } \pi\) and \(\theta = \frac { 2 } { 3 } \pi\).
CAIE FP1 2014 June Q6
6 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & - 1 & 1 & 3 \\ 2 & 0 & 0 & 5 \\ 6 & - 2 & 2 & 11 \\ 10 & - 3 & 3 & 19 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and state a basis for the range space of T .
  2. Obtain a basis for the null space of T .
CAIE FP1 2014 June Q7
7 Use de Moivre's theorem to show that $$\tan 5 \theta = \frac { 5 t - 10 t ^ { 3 } + t ^ { 5 } } { 1 - 10 t ^ { 2 } + 5 t ^ { 4 } }$$ where \(t = \tan \theta\). Deduce that the roots of the equation \(t ^ { 4 } - 10 t ^ { 2 } + 5 = 0\) are \(\pm \tan \frac { 1 } { 5 } \pi\) and \(\pm \tan \frac { 2 } { 5 } \pi\). Hence show that \(\tan \frac { 1 } { 5 } \pi \tan \frac { 2 } { 5 } \pi = \sqrt { } 5\).
CAIE FP1 2014 June Q8
8 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find
  1. the arc length of \(C\),
  2. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2014 June Q9
9 The matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r } - 2 & 2 & 2 \\ 2 & 1 & 2 \\ - 3 & - 6 & - 7 \end{array} \right)$$ has an eigenvector \(\left( \begin{array} { r } 0 \\ 1 \\ - 1 \end{array} \right)\). Find the corresponding eigenvalue. It is given that if the eigenvalues of a general \(3 \times 3\) matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { l l l } a & b & c \\ d & e & f \\ g & h & i \end{array} \right)$$ are \(\lambda _ { 1 } , \lambda _ { 2 }\) and \(\lambda _ { 3 }\) then $$\lambda _ { 1 } + \lambda _ { 2 } + \lambda _ { 3 } = a + e + i$$ and the determinant of \(\mathbf { A }\) has the value \(\lambda _ { 1 } \lambda _ { 2 } \lambda _ { 3 }\). Use these results to find the other two eigenvalues of the matrix \(\mathbf { M }\), and find corresponding eigenvectors.