CAIE P2 2023 November — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2023
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicTrig Proofs

6
  1. Show that \(\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \equiv 4 + 6 \cos \theta - 4 \cos ^ { 2 } \theta\).
  2. Solve the equation $$\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) + 3 = 0$$ for \(- \pi < \theta < 0\).
  3. Find \(\int \operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \mathrm { d } \theta\).

6 (a) Show that $\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \equiv 4 + 6 \cos \theta - 4 \cos ^ { 2 } \theta$.\\

(b) Solve the equation

$$\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) + 3 = 0$$

for $- \pi < \theta < 0$.\\

(c) Find $\int \operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$.\\

\hfill \mbox{\textit{CAIE P2 2023 Q6}}