| Exam Board | CAIE |
|---|---|
| Module | P2 (Pure Mathematics 2) |
| Year | 2023 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Trig Proofs |
6 (a) Show that $\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \equiv 4 + 6 \cos \theta - 4 \cos ^ { 2 } \theta$.\\
(b) Solve the equation
$$\operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) + 3 = 0$$
for $- \pi < \theta < 0$.\\
(c) Find $\int \operatorname { cosec } \theta \left( 3 \sin 2 \theta + 4 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$.\\
\hfill \mbox{\textit{CAIE P2 2023 Q6}}