6 The matrix \(\mathbf { A }\) is given by
$$\mathbf { A } = \left( \begin{array} { l l l }
4 & - 5 & 3 \\
3 & - 4 & 3 \\
1 & - 1 & 2
\end{array} \right)$$
Show that \(\mathbf { e } = \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue.
Find the other two eigenvalues of \(\mathbf { A }\).
The matrix \(\mathbf { B }\) is given by
$$\mathbf { B } = \left( \begin{array} { r r r }
- 1 & 4 & 0 \\
- 1 & 3 & 1 \\
1 & - 1 & 3
\end{array} \right)$$
Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { B }\) and deduce an eigenvector of the matrix \(\mathbf { A B }\), stating the corresponding eigenvalue.
6 The matrix $\mathbf { A }$ is given by
$$\mathbf { A } = \left( \begin{array} { l l l }
4 & - 5 & 3 \\
3 & - 4 & 3 \\
1 & - 1 & 2
\end{array} \right)$$
Show that $\mathbf { e } = \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)$ is an eigenvector of $\mathbf { A }$ and state the corresponding eigenvalue.
Find the other two eigenvalues of $\mathbf { A }$.
The matrix $\mathbf { B }$ is given by
$$\mathbf { B } = \left( \begin{array} { r r r }
- 1 & 4 & 0 \\
- 1 & 3 & 1 \\
1 & - 1 & 3
\end{array} \right)$$
Show that $\mathbf { e }$ is an eigenvector of $\mathbf { B }$ and deduce an eigenvector of the matrix $\mathbf { A B }$, stating the corresponding eigenvalue.
\hfill \mbox{\textit{CAIE FP1 2013 Q6}}