Questions — CAIE (7659 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2010 June Q10
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x + 4 y + 12 z & = 5 \\ 2 x + a y + 12 z & = a - 1 \\ 3 x + 12 y + 2 a z & = 10 \end{aligned}$$ has a unique solution. Show that the system does not have any solution in the case \(a = 18\). Given that \(a = 8\), show that the number of solutions is infinite and find the solution for which \(x + y + z = 1\).
CAIE FP1 2010 June Q11 EITHER
The variables \(z\) and \(x\) are related by the differential equation $$3 z ^ { 2 } \frac { \mathrm {~d} ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 z ^ { 2 } \frac { \mathrm {~d} z } { \mathrm {~d} x } + 6 z \left( \frac { \mathrm {~d} z } { \mathrm {~d} x } \right) ^ { 2 } + 5 z ^ { 3 } = 5 x + 2$$ Use the substitution \(y = z ^ { 3 }\) to show that \(y\) and \(x\) are related by the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5 x + 2$$ Given that \(z = 1\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = - \frac { 2 } { 3 }\) when \(x = 0\), find \(z\) in terms of \(x\). Deduce that, for large positive values of \(x , z \approx x ^ { \frac { 1 } { 3 } }\).
CAIE FP1 2010 June Q11 OR
The curve \(C\) has equation $$y = \frac { x ( x + 1 ) } { ( x - 1 ) ^ { 2 } }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that there is exactly one point of intersection of \(C\) with the asymptotes and find its coordinates.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence
    (a) find the coordinates of any stationary points of \(C\),
    (b) state the set of values of \(x\) for which the gradient of \(C\) is negative.
  4. Draw a sketch of \(C\).
CAIE S2 2021 November Q1
1 It is known that the height \(H\), in metres, of trees of a certain kind has the distribution \(\mathrm { N } ( 12.5,10.24 )\). A scientist takes a random sample of 25 trees of this kind and finds the sample mean, \(\bar { H }\), of the heights.
  1. State the distribution of \(\bar { H }\), giving the values of any parameters.
  2. Find \(\mathrm { P } ( 12 < \bar { H } < 13 )\).
CAIE S2 2021 November Q2
2 The number of enquiries received per day at a customer service desk has a Poisson distribution with mean 45.2. If more than 60 enquiries are received in a day, the customer service desk cannot deal with them all. Use a suitable approximating distribution to find the probability that, on a randomly chosen day, the customer service desk cannot deal with all the enquiries that are received.
CAIE S2 2021 November Q3
3 A random sample of 75 students at a large college was selected for a survey. 15 of these students said that they owned a car. From this result an approximate \(\alpha \%\) confidence interval for the proportion of all students at the college who own a car was calculated. The width of this interval was found to be 0.162 . Calculate the value of \(\alpha\) correct to 2 significant figures.
CAIE S2 2021 November Q4
4 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 18 } \left( 9 - x ^ { 2 } \right) & 0 \leqslant x \leqslant 3 \\ 0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { P } ( X < 1.2 )\).
  2. Find \(\mathrm { E } ( X )\).
    The median of \(X\) is \(m\).
  3. Show that \(m ^ { 3 } - 27 m + 27 = 0\).
CAIE S2 2021 November Q5
5
  1. The proportion of people having a particular medical condition is 1 in 100000 . A random sample of 2500 people is obtained. The number of people in the sample having the condition is denoted by \(X\).
    1. State, with a justification, a suitable approximating distribution for \(X\), giving the values of any parameters.
    2. Use the approximating distribution to calculate \(\mathrm { P } ( X > 0 )\).
  2. The percentage of people having a different medical condition is thought to be \(30 \%\). A researcher suspects that the true percentage is less than \(30 \%\). In a medical trial a random sample of 28 people was selected and 4 people were found to have this condition. Use a binomial distribution to test the researcher's suspicion at the \(2 \%\) significance level.
CAIE S2 2021 November Q6
6 The random variable \(T\) denotes the time, in seconds, for 100 m races run by Tania. \(T\) is normally distributed with mean \(\mu\) and variance \(\sigma ^ { 2 }\). A random sample of 40 races run by Tania gave the following results. $$n = 40 \quad \Sigma t = 560 \quad \Sigma t ^ { 2 } = 7850$$
  1. Calculate unbiased estimates of \(\mu\) and \(\sigma ^ { 2 }\).
    The random variable \(S\) denotes the time, in seconds, for 100 m races run by Suki. \(S\) has the independent distribution \(\mathrm { N } ( 14.2,0.3 )\).
  2. Using your answers to part (a), find the probability that, in a randomly chosen 100 m race, Suki's time will be at least 0.1 s more than Tania's time.
CAIE S2 2021 November Q7
7 The masses, in grams, of apples from a certain farm have mean \(\mu\) and standard deviation 5.2. The farmer says that the value of \(\mu\) is 64.6. A quality control inspector claims that the value of \(\mu\) is actually less than 64.6. In order to test his claim he chooses a random sample of 100 apples from the farm.
  1. The mean mass of the 100 apples is found to be 63.5 g . Carry out the test at the \(2.5 \%\) significance level.
  2. Later another test of the same hypotheses at the \(2.5 \%\) significance level, with another random sample of 100 apples from the same farm, is carried out. Given that the value of \(\mu\) is in fact 62.7 , calculate the probability of a Type II error.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2011 June Q1
1 Express \(\frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$ Deduce the value of $$\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$
CAIE FP1 2011 June Q2
2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\frac { \beta } { k } , \beta , k \beta\), where \(p , q , r , k\) and \(\beta\) are non-zero real constants. Show that \(\beta = - \frac { q } { p }\). Deduce that \(r p ^ { 3 } = q ^ { 3 }\).
CAIE FP1 2011 June Q3
3 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 3 & - 2 & 4 \\ 5 & 15 & - 9 & 19 \\ - 2 & - 6 & 3 & - 7 \\ 3 & 9 & - 5 & 11 \end{array} \right)\).
  1. Find the rank of \(\mathbf { M }\).
  2. Obtain a basis for the null space of T .
CAIE FP1 2011 June Q4
4 It is given that \(\mathrm { f } ( n ) = 3 ^ { 3 n } + 6 ^ { n - 1 }\).
  1. Show that \(\mathrm { f } ( n + 1 ) + \mathrm { f } ( n ) = 28 \left( 3 ^ { 3 n } \right) + 7 \left( 6 ^ { n - 1 } \right)\).
  2. Hence, or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 7 for every positive integer \(n\).
CAIE FP1 2011 June Q5
5 The curve \(C\) has polar equation \(r = 2 \cos 2 \theta\). Sketch the curve for \(0 \leqslant \theta < 2 \pi\). Find the exact area of one loop of the curve.
CAIE FP1 2011 June Q6
6 The line \(l _ { 1 }\) passes through the point with position vector \(8 \mathbf { i } + 8 \mathbf { j } - 7 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } + 3 \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(7 \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } - \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). In either order,
  1. show that \(P Q = 13\),
  2. find the position vectors of \(P\) and \(Q\).
CAIE FP1 2011 June Q7
7 The variables \(x\) and \(y\) are related by the differential equation $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 3 } = 8 \mathrm { e } ^ { - x }$$ Given that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 15 v = 24 \mathrm { e } ^ { - x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2011 June Q8
8 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1 \\ - 1 & 0 & - 3 \\ 1 & - 3 & 0 \end{array} \right)\). Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2011 June Q9
9 The curve \(C\) has equation \(y = x ^ { \frac { 3 } { 2 } }\). Find the coordinates of the centroid of the region bounded by \(C\), the lines \(x = 1 , x = 4\) and the \(x\)-axis. Show that the length of the arc of \(C\) from the point where \(x = 5\) to the point where \(x = 28\) is 139 .
CAIE FP1 2011 June Q10
10 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$ A curve has parametric equations \(x = a \sin ^ { 3 } t\) and \(y = a \cos ^ { 3 } t\), where \(a\) is a constant and \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\). Show that the mean value \(m\) of \(y\) over the interval \(0 \leqslant x \leqslant a\) is given by $$m = 3 a \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( \cos ^ { 4 } t - \cos ^ { 6 } t \right) \mathrm { d } t$$ Find the exact value of \(m\), in terms of \(a\).
CAIE FP1 2011 June Q11 EITHER
Use de Moivre's theorem to prove that $$\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }$$ State the exact values of \(\theta\), between 0 and \(\pi\), that satisfy \(\tan 3 \theta = 1\). Express each root of the equation \(t ^ { 3 } - 3 t ^ { 2 } - 3 t + 1 = 0\) in the form \(\tan ( k \pi )\), where \(k\) is a positive rational number. For each of these values of \(k\), find the exact value of \(\tan ( k \pi )\).
CAIE FP1 2011 June Q11 OR
The curve \(C\) has equation $$y = \frac { x ^ { 2 } + \lambda x - 6 \lambda ^ { 2 } } { x + 3 }$$ where \(\lambda\) is a constant such that \(\lambda \neq 1\) and \(\lambda \neq - \frac { 3 } { 2 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and deduce that if \(C\) has two stationary points then \(- \frac { 3 } { 2 } < \lambda < 1\).
  2. Find the equations of the asymptotes of \(C\).
  3. Draw a sketch of \(C\) for the case \(0 < \lambda < 1\).
  4. Draw a sketch of \(C\) for the case \(\lambda > 3\).
CAIE P2 2023 November Q1
1 It is given that \(\theta\) is an acute angle in degrees such that \(\sin \theta = \frac { 2 } { 3 }\).
Find the exact value of \(\sin \left( \theta + 60 ^ { \circ } \right)\).
CAIE P2 2023 November Q2
2 A curve has equation \(y = 3 \tan \frac { 1 } { 2 } x \cos 2 x\).
Find the gradient of the curve at the point for which \(x = \frac { 1 } { 3 } \pi\).
CAIE P2 2023 November Q3
3
  1. Find \(\int _ { 4 } ^ { 10 } \frac { 4 } { 2 x - 5 } \mathrm {~d} x\), giving your answer in the form \(\ln a\), where \(a\) is an integer.
  2. Find the exact value of \(\int _ { 4 } ^ { 10 } \mathrm { e } ^ { 2 x - 5 } \mathrm {~d} x\).