CAIE FP1 2011 June — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicCurve Sketching

The curve \(C\) has equation $$y = \frac { x ^ { 2 } + \lambda x - 6 \lambda ^ { 2 } } { x + 3 }$$ where \(\lambda\) is a constant such that \(\lambda \neq 1\) and \(\lambda \neq - \frac { 3 } { 2 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and deduce that if \(C\) has two stationary points then \(- \frac { 3 } { 2 } < \lambda < 1\).
  2. Find the equations of the asymptotes of \(C\).
  3. Draw a sketch of \(C\) for the case \(0 < \lambda < 1\).
  4. Draw a sketch of \(C\) for the case \(\lambda > 3\).

The curve $C$ has equation

$$y = \frac { x ^ { 2 } + \lambda x - 6 \lambda ^ { 2 } } { x + 3 }$$

where $\lambda$ is a constant such that $\lambda \neq 1$ and $\lambda \neq - \frac { 3 } { 2 }$.\\
(i) Find $\frac { \mathrm { d } y } { \mathrm {~d} x }$ and deduce that if $C$ has two stationary points then $- \frac { 3 } { 2 } < \lambda < 1$.\\
(ii) Find the equations of the asymptotes of $C$.\\
(iii) Draw a sketch of $C$ for the case $0 < \lambda < 1$.\\
(iv) Draw a sketch of $C$ for the case $\lambda > 3$.

\hfill \mbox{\textit{CAIE FP1 2011 Q11 OR}}