CAIE FP1 2011 June — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2011
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

8 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1 \\ - 1 & 0 & - 3 \\ 1 & - 3 & 0 \end{array} \right)\). Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).

8 Find the eigenvalues and corresponding eigenvectors of the matrix $\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1 \\ - 1 & 0 & - 3 \\ 1 & - 3 & 0 \end{array} \right)$.

Find a non-singular matrix $\mathbf { P }$ and a diagonal matrix $\mathbf { D }$ such that $\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }$.

\hfill \mbox{\textit{CAIE FP1 2011 Q8}}