Questions — CAIE S2 (717 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE S2 2012 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{0cd5fc36-486d-4c24-b809-907b3e87cfd7-2_371_531_255_806} The diagram shows the graph of the probability density function, f , of a random variable \(X\). Find the median of \(X\).
CAIE S2 2012 November Q1
1 The lengths of logs are normally distributed with mean 3.5 m and standard deviation 0.12 m . Describe fully the distribution of the total length of 8 randomly chosen logs.
CAIE S2 2012 November Q2
2
  1. A random variable \(X\) has mean \(\mu\) and variance \(\sigma ^ { 2 }\). The mean of a random sample of \(n\) values of \(X\) is denoted by \(\bar { X }\). Give expressions for \(\mathrm { E } ( \bar { X } )\) and \(\operatorname { Var } ( \bar { X } )\).
  2. The heights, in centimetres, of adult males in Brancot are normally distributed with mean 177.8 and standard deviation 6.1. Find the probability that the mean height of a random sample of 12 adult males from Brancot is less than 176 cm .
  3. State, with a reason, whether it was necessary to use the Central Limit Theorem in the calculation in part (ii).
CAIE S2 2012 November Q3
3 Joshi suspects that a certain die is biased so that the probability of showing a six is less than \(\frac { 1 } { 6 }\). He plans to throw the die 25 times and if it shows a six on fewer than 2 throws, he will conclude that the die is biased in this way.
  1. Find the probability of a Type I error and state the significance level of the test. Joshi now decides to throw the die 100 times. It shows a six on 9 of these throws.
  2. Calculate an approximate \(95 \%\) confidence interval for the probability of showing a six on one throw of this die.
CAIE S2 2012 November Q4
4 The masses of a certain variety of potato are normally distributed with mean 180 g and variance \(1550 \mathrm {~g} ^ { 2 }\). Two potatoes of this variety are chosen at random. Find the probability that the mass of one of these potatoes is at least twice the mass of the other.
CAIE S2 2012 November Q5
5 It is claimed that, on average, people following the Losefast diet will lose more than 2 kg per month. The weight losses, \(x\) kilograms per month, of a random sample of 200 people following the Losefast diet were recorded and summarised as follows. $$n = 200 \quad \Sigma x = 460 \quad \Sigma x ^ { 2 } = 1636$$
  1. Calculate unbiased estimates of the population mean and variance.
  2. Test the claim at the \(1 \%\) significance level.
CAIE S2 2012 November Q6
6 Darts are thrown at random at a circular board. The darts hit the board at distances \(X\) centimetres from the centre, where \(X\) is a random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 2 } { a ^ { 2 } } x & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(a\) is a positive constant.
  1. Verify that f is a probability density function whatever the value of \(a\). It is now given that \(\mathrm { E } ( X ) = 8\).
  2. Find the value of \(a\).
  3. Find the probability that a dart lands more than 6 cm from the centre of the board.
CAIE S2 2012 November Q7
7 The number of workers, \(X\), absent from a factory on a particular day has the distribution \(\mathrm { B } ( 80,0.01 )\).
  1. Explain why it is appropriate to use a Poisson distribution as an approximating distribution for \(X\).
  2. Use the Poisson distribution to find the probability that the number of workers absent during 12 randomly chosen days is more than 2 and less than 6 . Following a change in working conditions, the management wishes to test whether the mean number of workers absent per day has decreased.
  3. During 10 randomly chosen days, there were a total of 2 workers absent. Use the Poisson distribution to carry out the test at the \(2 \%\) significance level.
CAIE S2 2013 November Q1
1 Each computer made in a factory contains 1000 components. On average, 1 in 30000 of these components is defective. Use a suitable approximate distribution to find the probability that a randomly chosen computer contains at least 1 faulty component.
CAIE S2 2013 November Q2
2 Heights of a certain species of animal are known to be normally distributed with standard deviation 0.17 m . A conservationist wishes to obtain a \(99 \%\) confidence interval for the population mean, with total width less than 0.2 m . Find the smallest sample size required.
CAIE S2 2013 November Q3
3 Following a change in flight schedules, an airline pilot wished to test whether the mean distance that he flies in a week has changed. He noted the distances, \(x \mathrm {~km}\), that he flew in 50 randomly chosen weeks and summarised the results as follows. $$n = 50 \quad \Sigma x = 143300 \quad \Sigma x ^ { 2 } = 410900000$$
  1. Calculate unbiased estimates of the population mean and variance.
  2. In the past, the mean distance that he flew in a week was 2850 km . Test, at the \(5 \%\) significance level, whether the mean distance has changed.
CAIE S2 2013 November Q4
4 The number of radioactive particles emitted per 150-minute period by some material has a Poisson distribution with mean 0.7.
  1. Find the probability that at most 2 particles will be emitted during a randomly chosen 10 -hour period.
  2. Find, in minutes, the longest time period for which the probability that no particles are emitted is at least 0.99 .
CAIE S2 2013 November Q5
5 The volume, in \(\mathrm { cm } ^ { 3 }\), of liquid left in a glass by people when they have finished drinking all they want is modelled by the random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} k ( x - 2 ) ^ { 2 } & 0 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 8 }\).
  2. 20\% of people leave at least \(d \mathrm {~cm} ^ { 3 }\) of liquid in a glass. Find \(d\).
  3. Find \(\mathrm { E } ( X )\).
CAIE S2 2013 November Q6
6 At the last election, 70\% of people in Apoli supported the president. Luigi believes that the same proportion support the president now. Maria believes that the proportion who support the president now is \(35 \%\). In order to test who is right, they agree on a hypothesis test, taking Luigi's belief as the null hypothesis. They will ask 6 people from Apoli, chosen at random, and if more than 3 support the president they will accept Luigi's belief.
  1. Calculate the probability of a Type I error.
  2. If Maria's belief is true, calculate the probability of a Type II error.
  3. In fact 2 of the 6 people say that they support the president. State which error, Type I or Type II, might be made. Explain your answer.
CAIE S2 2013 November Q7
7 Kieran and Andreas are long-jumpers. They model the lengths, in metres, that they jump by the independent random variables \(K \sim \mathrm {~N} ( 5.64,0.0576 )\) and \(A \sim \mathrm {~N} ( 4.97,0.0441 )\) respectively. They each make a jump and measure the length. Find the probability that
  1. the sum of the lengths of their jumps is less than 11 m ,
  2. Kieran jumps more than 1.2 times as far as Andreas.
CAIE S2 2013 November Q5
5 The volume, in \(\mathrm { cm } ^ { 3 }\), of liquid left in a glass by people when they have finished drinking all they want is modelled by the random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} k ( x - 2 ) ^ { 2 } & 0 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 8 }\).
  2. \(20 \%\) of people leave at least \(d \mathrm {~cm} ^ { 3 }\) of liquid in a glass. Find \(d\).
  3. Find \(\mathrm { E } ( X )\).
CAIE S2 2013 November Q1
1 A random sample of 80 values of a variable \(X\) is taken and these values are summarised below. $$n = 80 \quad \Sigma x = 150.2 \quad \Sigma x ^ { 2 } = 820.24$$ Calculate unbiased estimates of the population mean and variance of \(X\) and hence find a \(95 \%\) confidence interval for the population mean of \(X\).
CAIE S2 2013 November Q2
2 A traffic officer notes the speeds of vehicles as they pass a certain point. In the past the mean of these speeds has been \(62.3 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) and the standard deviation has been \(10.4 \mathrm {~km} \mathrm {~h} ^ { - 1 }\). A speed limit is introduced, and following this, the mean of the speeds of 75 randomly chosen vehicles passing the point is found to be \(59.9 \mathrm {~km} \mathrm {~h} ^ { - 1 }\).
  1. Making an assumption that should be stated, test at the \(2 \%\) significance level whether the mean speed has decreased since the introduction of the speed limit.
  2. Explain whether it was necessary to use the Central Limit theorem in part (i).
CAIE S2 2013 November Q3
3 The waiting time, \(T\) weeks, for a particular operation at a hospital has probability density function given by $$f ( t ) = \begin{cases} \frac { 1 } { 2500 } \left( 100 t - t ^ { 3 } \right) & 0 \leqslant t \leqslant 10
0 & \text { otherwise } \end{cases}$$
  1. Given that \(\mathrm { E } ( T ) = \frac { 16 } { 3 }\), find \(\operatorname { Var } ( T )\).
  2. \(10 \%\) of patients have to wait more than \(n\) weeks for their operation. Find the value of \(n\), giving your answer correct to the nearest integer.
CAIE S2 2013 November Q4
4 Goals scored by Femchester United occur at random with a constant average of 1.2 goals per match. Goals scored against Femchester United occur independently and at random with a constant average of 0.9 goals per match.
  1. Find the probability that in a randomly chosen match involving Femchester,
    (a) a total of 3 goals are scored,
    (b) a total of 3 goals are scored and Femchester wins. The manager promises the Femchester players a bonus if they score at least 35 goals in the next 25 matches.
  2. Find the probability that the players receive the bonus.
CAIE S2 2013 November Q5
5 A fair six-sided die has faces numbered \(1,2,3,4,5,6\). The score on one throw is denoted by \(X\).
  1. Write down the value of \(\mathrm { E } ( X )\) and show that \(\operatorname { Var } ( X ) = \frac { 35 } { 12 }\). Fayez has a six-sided die with faces numbered \(1,2,3,4,5,6\). He suspects that it is biased so that when it is thrown it is more likely to show a low number than a high number. In order to test his suspicion, he plans to throw the die 50 times. If the mean score is less than 3 he will conclude that the die is biased.
  2. Find the probability of a Type I error.
  3. With reference to this context, describe circumstances in which Fayez would make a Type II error.
CAIE S2 2013 November Q6
6 The lifetimes, in hours, of Longlive light bulbs and Enerlow light bulbs have the independent distributions \(\mathrm { N } \left( 1020,45 ^ { 2 } \right)\) and \(\mathrm { N } \left( 2800,52 ^ { 2 } \right)\) respectively.
  1. Find the probability that the total of the lifetimes of 5 randomly chosen Longlive bulbs is less than 5200 hours.
  2. Find the probability that the lifetime of a randomly chosen Enerlow bulb is at least 3 times that of a randomly chosen Longlive bulb.
CAIE S2 2014 November Q1
1 The masses, in grams, of potatoes of types \(A\) and \(B\) have the distributions \(\mathrm { N } \left( 175,60 ^ { 2 } \right)\) and \(\mathrm { N } \left( 105,28 ^ { 2 } \right)\) respectively. Find the probability that a randomly chosen potato of type \(A\) has a mass that is at least twice the mass of a randomly chosen potato of type \(B\).
CAIE S2 2014 November Q2
2 The probability that a randomly chosen plant of a certain kind has a particular defect is 0.01 . A random sample of 150 plants is taken.
  1. Use an appropriate approximating distribution to find the probability that at least 1 plant has the defect. Justify your approximating distribution. The probability that a randomly chosen plant of another kind has the defect is 0.02 . A random sample of 100 of these plants is taken.
  2. Use an appropriate approximating distribution to find the probability that the total number of plants with the defect in the two samples together is more than 3 and less than 7 .
CAIE S2 2014 November Q3
3
  1. The time for which Lucy has to wait at a certain traffic light each day is \(T\) minutes, where \(T\) has probability density function given by $$f ( t ) = \begin{cases} \frac { 3 } { 2 } t - \frac { 3 } { 4 } t ^ { 2 } & 0 \leqslant t \leqslant 2
    0 & \text { otherwise } \end{cases}$$ Find the probability that, on a randomly chosen day, Lucy has to wait for less than half a minute at the traffic light.

  2. \includegraphics[max width=\textwidth, alt={}, center]{f9436a68-ec88-4feb-9c06-fc29fe53d1fe-2_405_793_1471_715} The diagram shows the graph of the probability density function, g , of a random variable \(X\). The graph of g is a semicircle with centre \(( 0,0 )\) and radius \(a\). Elsewhere \(\mathrm { g } ( x ) = 0\).
    1. Find the value of \(a\).
    2. State the value of \(\mathrm { E } ( X )\).
    3. Given that \(\mathrm { P } ( X < - c ) = 0.2\), find \(\mathrm { P } ( X < c )\).