Integration using De Moivre identities

A question is this type if and only if it asks to evaluate a definite integral of powers of sin θ or cos θ by first expressing them using De Moivre-derived identities.

29 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q8
15 marks Challenging +1.8
8
  1. Use de Moivre's theorem to show that \(\sin ^ { 6 } \theta = - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )\).
    It is given that \(\cos ^ { 6 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta + 6 \cos 4 \theta + 15 \cos 2 \theta + 10 )\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \left( \cos ^ { 6 } \left( \frac { 1 } { 4 } x \right) + \sin ^ { 6 } \left( \frac { 1 } { 4 } x \right) \right) \mathrm { d } x\).
  3. Express each root of the equation \(16 c ^ { 6 } + 16 \left( 1 - c ^ { 2 } \right) ^ { 3 } - 13 = 0\) in the form \(\cos k \pi\), where \(k\) is a rational number.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2023 June Q3
8 marks Challenging +1.2
3
  1. By considering the binomial expansion of \(\left( z + z ^ { - 1 } \right) ^ { 4 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that \(\cos ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta + 4 \cos 2 \theta + 3 )\).
  2. Use the substitution \(x = \sin \theta\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } \mathrm {~d} x\).
CAIE Further Paper 2 2024 November Q8
14 marks Hard +2.3
8
  1. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 7 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\cos ^ { 7 } \theta = a \cos 7 \theta + b \cos 5 \theta + c \cos 3 \theta + d \cos \theta$$ where \(a , b , c\) and \(d\) are constants to be determined.
    Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { n } \theta \mathrm {~d} \theta\).
  2. Show that $$n I _ { n } = 2 ^ { - \frac { 1 } { 2 } n } + ( n - 1 ) I _ { n - 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-18_2716_40_109_2009}
  3. Using the results given in parts (a) and (b), find the exact value of \(I _ { 9 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
Edexcel F2 2015 June Q8
14 marks Challenging +1.2
  1. (a) Show that
$$\left( z + \frac { 1 } { z } \right) ^ { 3 } \left( z - \frac { 1 } { z } \right) ^ { 3 } = z ^ { 6 } - \frac { 1 } { z ^ { 6 } } - k \left( z ^ { 2 } - \frac { 1 } { z ^ { 2 } } \right)$$ where \(k\) is a constant to be found. Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), where \(\theta\) is real,
(b) show that
  1. \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\)
  2. \(z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta\) (c) Hence show that $$\cos ^ { 3 } \theta \sin ^ { 3 } \theta = \frac { 1 } { 32 } ( 3 \sin 2 \theta - \sin 6 \theta )$$ (d) Find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 8 } } \cos ^ { 3 } \theta \sin ^ { 3 } \theta d \theta$$
Edexcel F2 2016 June Q8
10 marks Challenging +1.2
8. (a) Use de Moivre's theorem to show that $$\cos ^ { 5 } \theta \equiv p \cos 5 \theta + q \cos 3 \theta + r \cos \theta$$ where \(p , q\) and \(r\) are rational numbers to be found.
(b) Hence, showing all your working, find the exact value of $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 3 } } \cos ^ { 5 } \theta \mathrm {~d} \theta$$
Edexcel F2 2022 June Q8
14 marks Challenging +1.2
  1. (a) Use de Moivre's theorem to show that
$$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ (b) Hence determine the five distinct solutions of the equation $$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 5 } = 0$$ giving your answers to 3 decimal places.
(c) Use the identity given in part (a) to show that $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta - 6 \sin \theta \right) \mathrm { d } \theta = a \sqrt { 2 } + b$$ where \(a\) and \(b\) are rational numbers to be determined.
Edexcel FP2 2007 June Q11
11 marks Challenging +1.2
11. (a) Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ (b) Express \(32 \cos ^ { 6 } \theta\) in the form \(p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + \mathrm { s }\), where \(p , q , r\) and \(s\) are integers.
(c) Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \cos ^ { 6 } \theta \mathrm {~d} \theta$$
Edexcel FP2 2014 June Q7
14 marks Challenging +1.8
7. (a) Use de Moivre's theorem to show that $$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ (b) Hence find the five distinct solutions of the equation $$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 2 } = 0$$ giving your answers to 3 decimal places where necessary.
(c) Use the identity given in (a) to find $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$$ expressing your answer in the form \(a \sqrt { } 2 + b\), where \(a\) and \(b\) are rational numbers.
Edexcel FP2 2016 June Q5
10 marks Challenging +1.2
5. (a) Use de Moivre's theorem to show that $$\sin ^ { 5 } \theta \equiv a \sin 5 \theta + b \sin 3 \theta + c \sin \theta$$ where \(a\), \(b\) and \(c\) are constants to be found.
(b) Hence show that \(\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 5 } \theta \mathrm {~d} \theta = \frac { 53 } { 480 }\) VILM SIHI NITIIIUMI ON OC
VILV SIHI NI III HM ION OC
VALV SIHI NI JIIIM ION OO
Edexcel FP2 Specimen Q8
14 marks Challenging +1.2
  1. (a) Given that \(z = e ^ { i \theta }\), show that
$$z ^ { p } + \frac { 1 } { z ^ { p } } = 2 \cos p \theta$$ where \(p\) is a positive integer.
(b) Given that $$\cos ^ { 4 } \theta = A \cos 4 \theta + B \cos 2 \theta + C$$ find the values of the constants \(A , B\) and \(C\). The region \(R\) bounded by the curve with equation \(y = \cos ^ { 2 } x , - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }\), and the \(x\)-axis is rotated through \(2 \pi\) about the \(x\)-axis.
(c) Find the volume of the solid generated.
Edexcel F2 2018 Specimen Q8
14 marks Challenging +1.2
  1. (a) Show that
$$\left( z + \frac { 1 } { z } \right) ^ { 3 } \left( z - \frac { 1 } { z } \right) ^ { 3 } = z ^ { 6 } - \frac { 1 } { z ^ { 6 } } - k \left( z ^ { 2 } - \frac { 1 } { z ^ { 2 } } \right)$$ where \(k\) is a constant to be found. Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), where \(\theta\) is real,
(b) show that
  1. \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\)
  2. \(z ^ { n } - \frac { 1 } { z ^ { n } } = 2 i \sin n \theta\) (c) Hence show that $$\cos ^ { 3 } \theta \sin ^ { 3 } \theta = \frac { 1 } { 32 } \quad ( 3 \sin 2 \theta - \sin 6 \theta )$$ (d) Find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 8 } } \cos ^ { 3 } \theta \sin ^ { 3 } \theta d \theta$$ \includegraphics[max width=\textwidth, alt={}, center]{b197811e-1df5-4937-b0d8-f98f82412c76-32_227_148_2524_1797}
CAIE Further Paper 2 2024 November Q8
14 marks Hard +2.3
8
  1. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 7 }\) ,where \(z = \cos \theta + \mathrm { i } \sin \theta\) ,use de Moivre's theorem to show that $$\cos ^ { 7 } \theta = a \cos 7 \theta + b \cos 5 \theta + c \cos 3 \theta + d \cos \theta$$ where \(a , b , c\) and \(d\) are constants to be determined.
    Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { n } \theta \mathrm {~d} \theta\).
  2. Show that $$n I _ { n } = 2 ^ { - \frac { 1 } { 2 } n } + ( n - 1 ) I _ { n - 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-18_2718_42_107_2007}
  3. Using the results given in parts (a) and (b), find the exact value of \(I _ { 9 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
OCR FP3 Specimen Q7
10 marks
7
  1. Prove that if \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), then \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\).
  2. Express \(\cos ^ { 6 } \theta\) in terms of cosines of multiples of \(\theta\), and hence find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \cos ^ { 6 } \theta \mathrm {~d} \theta$$
OCR FP3 2009 January Q8
12 marks Challenging +1.3
8
  1. By expressing \(\sin \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\), show that $$\sin ^ { 6 } \theta \equiv - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )$$
  2. Replace \(\theta\) by ( \(\frac { 1 } { 2 } \pi - \theta\) ) in the identity in part (i) to obtain a similar identity for \(\cos ^ { 6 } \theta\).
  3. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \sin ^ { 6 } \theta - \cos ^ { 6 } \theta \right) \mathrm { d } \theta\).
OCR FP3 2011 January Q3
8 marks Standard +0.8
3
  1. Express \(\sin \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\) and show that $$\sin ^ { 4 } \theta \equiv \frac { 1 } { 8 } ( \cos 4 \theta - 4 \cos 2 \theta + 3 )$$
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin ^ { 4 } \theta \mathrm {~d} \theta\).
CAIE FP1 2012 June Q7
10 marks Challenging +1.8
7 Expand \(\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }\) and, by substituting \(z = \cos \theta + \mathrm { i } \sin \theta\), find integers \(p , q , r , s\) such that $$64 \sin ^ { 2 } \theta \cos ^ { 4 } \theta = p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta$$ Using the substitution \(x = 2 \cos \theta\), show that $$\int _ { 1 } ^ { 2 } x ^ { 4 } \sqrt { } \left( 4 - x ^ { 2 } \right) \mathrm { d } x = \frac { 4 } { 3 } \pi + \sqrt { } 3$$
CAIE FP1 2017 June Q8
9 marks Challenging +1.2
8
  1. Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that \(z - \frac { 1 } { z } = 2 \mathrm { i } \sin \theta\) and hence express \(16 \sin ^ { 5 } \theta\) in the form \(\sin 5 \theta + p \sin 3 \theta + q \sin \theta\), where \(p\) and \(q\) are integers to be determined.
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } 16 \sin ^ { 5 } \theta \mathrm {~d} \theta\).
CAIE FP1 2003 November Q8
11 marks Challenging +1.3
8 Given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\) and \(n\) is a positive integer, show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ Hence express \(\sin ^ { 6 } \theta\) in the form $$p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + s$$ where the constants \(p , q , r , s\) are to be determined. Hence find the mean value of \(\sin ^ { 6 } \theta\) with respect to \(\theta\) over the interval \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
CAIE FP1 2009 November Q7
9 marks Challenging +1.2
7 Use de Moivre's theorem to express \(\sin ^ { 6 } \theta\) in the form $$a + b \cos 2 \theta + c \cos 4 \theta + d \cos 6 \theta$$ where \(a , b , c , d\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } 2 x d x$$ leaving your answer in terms of \(\pi\).
CAIE FP1 2011 November Q5
7 marks Standard +0.3
5 Use de Moivre's theorem to express \(\cos ^ { 4 } \theta\) in the form $$a \cos 4 \theta + b \cos 2 \theta + c$$ where \(a , b , c\) are constants to be found. Hence evaluate $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 4 } \theta d \theta$$ leaving your answer in terms of \(\pi\).
CAIE FP1 2016 November Q10
12 marks Challenging +1.2
10 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), show that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta - 2 \cos 4 \theta - \cos 2 \theta + 2 ) .$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
[0pt] [Question 11 is printed on the next page.]
OCR Further Pure Core 2 2019 June Q8
8 marks Challenging +1.2
8 In this question you must show detailed reasoning.
  1. By writing \(\sin \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\) show that $$\sin ^ { 6 } \theta = \frac { 1 } { 32 } ( 10 - 15 \cos 2 \theta + 6 \cos 4 \theta - \cos 6 \theta ) .$$
  2. Hence show that \(\sin \frac { 1 } { 8 } \pi = \frac { 1 } { 2 } \sqrt [ 6 ] { 20 - 14 \sqrt { 2 } }\).
AQA FP2 2008 June Q8
14 marks Challenging +1.2
8
    1. Expand $$\left( z + \frac { 1 } { z } \right) \left( z - \frac { 1 } { z } \right)$$
    2. Hence, or otherwise, expand $$\left( z + \frac { 1 } { z } \right) ^ { 4 } \left( z - \frac { 1 } { z } \right) ^ { 2 }$$
    1. Use De Moivre's theorem to show that if \(z = \cos \theta + \mathrm { i } \sin \theta\) then $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
    2. Write down a corresponding result for \(z ^ { n } - \frac { 1 } { z ^ { n } }\).
  1. Hence express \(\cos ^ { 4 } \theta \sin ^ { 2 } \theta\) in the form $$A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$ where \(A , B , C\) and \(D\) are rational numbers.
  2. Find \(\int \cos ^ { 4 } \theta \sin ^ { 2 } \theta d \theta\).
AQA FP2 2012 June Q8
14 marks Challenging +1.2
8
  1. Use De Moivre's Theorem to show that, if \(z = \cos \theta + \mathrm { i } \sin \theta\), then $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
    1. Expand \(\left( z ^ { 2 } + \frac { 1 } { z ^ { 2 } } \right) ^ { 4 }\).
    2. Show that $$\cos ^ { 4 } 2 \theta = A \cos 8 \theta + B \cos 4 \theta + C$$ where \(A , B\) and \(C\) are rational numbers.
  2. Hence solve the equation $$8 \cos ^ { 4 } 2 \theta = \cos 8 \theta + 5$$ for \(0 \leqslant \theta \leqslant \pi\), giving each solution in the form \(k \pi\).
  3. Show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos ^ { 4 } 2 \theta d \theta = \frac { 3 \pi } { 16 }$$
AQA FP2 2014 June Q6
12 marks Challenging +1.2
6
    1. Use De Moivre's Theorem to show that if \(z = \cos \theta + \mathrm { i } \sin \theta\), then $$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$
    2. Write down a similar expression for \(z ^ { n } + \frac { 1 } { z ^ { n } }\).
    1. Expand \(\left( z - \frac { 1 } { z } \right) ^ { 2 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\) in terms of \(z\).
    2. Hence show that $$8 \sin ^ { 2 } \theta \cos ^ { 2 } \theta = A + B \cos 4 \theta$$ where \(A\) and \(B\) are integers.
  1. Hence, by means of the substitution \(x = 2 \sin \theta\), find the exact value of $$\int _ { 1 } ^ { 2 } x ^ { 2 } \sqrt { 4 - x ^ { 2 } } \mathrm {~d} x$$ \includegraphics[max width=\textwidth, alt={}, center]{5287255f-5ac4-401a-b850-758257412ff7-14_1180_1707_1525_153}