A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q8
AQA FP2 2012 June — Question 8
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2012
Session
June
Topic
Complex numbers 2
8
Use De Moivre's Theorem to show that, if \(z = \cos \theta + \mathrm { i } \sin \theta\), then $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
Expand \(\left( z ^ { 2 } + \frac { 1 } { z ^ { 2 } } \right) ^ { 4 }\).
Show that $$\cos ^ { 4 } 2 \theta = A \cos 8 \theta + B \cos 4 \theta + C$$ where \(A , B\) and \(C\) are rational numbers.
Hence solve the equation $$8 \cos ^ { 4 } 2 \theta = \cos 8 \theta + 5$$ for \(0 \leqslant \theta \leqslant \pi\), giving each solution in the form \(k \pi\).
Show that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos ^ { 4 } 2 \theta d \theta = \frac { 3 \pi } { 16 }$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8