| Question | Answer | Marks | AO | Guidance |
| 4 | (a) | | DR \(\begin{aligned} | \sin \theta = \frac { \mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta } } { 2 \mathrm { i } } |
| \sin ^ { 6 } \theta = \left( \frac { \mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta } } { 2 i } \right) ^ { 6 } = - \frac { 1 } { 64 } \left( \mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta } \right) ^ { 6 } |
| \left( e ^ { i \theta } - e ^ { - i \theta } \right) ^ { 6 } = |
| \mathrm { e } ^ { 6 \mathrm { i } \theta } - 6 \mathrm { e } ^ { 4 \mathrm { i } \theta } + 15 \mathrm { e } ^ { 2 \mathrm { i } \theta } - 20 + 15 \mathrm { e } ^ { - 2 \mathrm { i } \theta } - 6 \mathrm { e } ^ { - 4 \mathrm { i } \theta } + \mathrm { e } ^ { - 6 \mathrm { i } \theta } \end{aligned}\) \(\begin{aligned} | \mathrm { e } ^ { 6 \mathrm { i } \theta } + \mathrm { e } ^ { - 6 \mathrm { i } \theta } - 6 \left( \mathrm { e } ^ { 4 \mathrm { i } \theta } + \mathrm { e } ^ { - 4 \mathrm { i } \theta } \right) + 15 \left( \mathrm { e } ^ { 2 \mathrm { i } \theta } + \mathrm { e } ^ { - 2 \mathrm { i } \theta } \right) - 20 |
| = 2 \cos 6 \theta - 6 \times 2 \cos 4 \theta + 15 \times 2 \cos 2 \theta - 20 |
| \therefore \sin ^ { 6 } \theta = |
| - \frac { 1 } { 64 } ( 2 \cos 6 \theta - 12 \cos 4 \theta + 30 \cos 2 \theta - 20 ) |
| = \frac { 1 } { 32 } ( 10 - 15 \cos 2 \theta + 6 \cos 4 \theta - \cos 6 \theta ) \end{aligned}\) | | | | Genuine attempt to use binomial expansion with correct evaluated binomial coefficients. Condone sign errors | | Collecting terms and using \(\mathrm { e } ^ { \mathrm { i } \phi } + \mathrm { e } ^ { - \mathrm { i } \phi } = 2 \cos \phi\) at least once. | | AG. Fully correct argument |
| | Condone \(2 \mathrm { i } \sin \theta = \mathrm { e } ^ { \mathrm { i } \theta } - \mathrm { e } ^ { - \mathrm { i } \theta }\) | | Allow use of \(\sin \theta = \frac { e ^ { i \theta } + e ^ { - i \theta } } { 2 i }\) for \(1 ^ { \text {st } }\) two M marks only | | If i omitted from denominator their expression for \(\sin \theta\) then only this M mark can still be awarded |
|
| (b) | | | DR \(\theta = \frac { \pi } { 8 } \text { and } \mathrm { eg } \cos 2 \theta = \frac { \sqrt { 2 } } { 2 }\) | | \(\sin ^ { 6 } \frac { \pi } { 8 } = \frac { 1 } { 32 } \left( 10 - 15 \times \frac { \sqrt { 2 } } { 2 } - \frac { - \sqrt { 2 } } { 2 } ( + 6 ( 0 ) ) \right)\) | | \(\sin \frac { \pi } { 8 } = \sqrt [ 6 ] { \frac { 1 } { 64 } ( 20 - 15 \sqrt { 2 } + \sqrt { 2 } ) }\) | | \(= \frac { 1 } { 2 } \sqrt [ 6 ] { 20 - 14 \sqrt { 2 } }\) |
| | 2.2a | | Choice of \(\theta\) soi and calculation of at least one cos term. | | Substitution and calculation of all cos terms |
| Terms must be shown distinct either in this line or in the form of \(\cos n \frac { \pi } { 8 }\) |