A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
OCR FP3 Specimen — Question 7
Exam Board
OCR
Module
FP3 (Further Pure Mathematics 3)
Session
Specimen
Topic
Complex numbers 2
7
Prove that if \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), then \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\).
Express \(\cos ^ { 6 } \theta\) in terms of cosines of multiples of \(\theta\), and hence find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \cos ^ { 6 } \theta \mathrm {~d} \theta$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8