A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q8
OCR FP3 2009 January — Question 8
Exam Board
OCR
Module
FP3 (Further Pure Mathematics 3)
Year
2009
Session
January
Topic
Complex numbers 2
8
By expressing \(\sin \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\), show that $$\sin ^ { 6 } \theta \equiv - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )$$
Replace \(\theta\) by ( \(\frac { 1 } { 2 } \pi - \theta\) ) in the identity in part (i) to obtain a similar identity for \(\cos ^ { 6 } \theta\).
Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \sin ^ { 6 } \theta - \cos ^ { 6 } \theta \right) \mathrm { d } \theta\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8