OCR FP3 2009 January — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2009
SessionJanuary
TopicComplex numbers 2

8
  1. By expressing \(\sin \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\), show that $$\sin ^ { 6 } \theta \equiv - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )$$
  2. Replace \(\theta\) by ( \(\frac { 1 } { 2 } \pi - \theta\) ) in the identity in part (i) to obtain a similar identity for \(\cos ^ { 6 } \theta\).
  3. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \sin ^ { 6 } \theta - \cos ^ { 6 } \theta \right) \mathrm { d } \theta\).