| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2009 |
| Session | November |
| Topic | Complex numbers 2 |
7 Use de Moivre's theorem to express \(\sin ^ { 6 } \theta\) in the form
$$a + b \cos 2 \theta + c \cos 4 \theta + d \cos 6 \theta$$
where \(a , b , c , d\) are constants to be found.
Hence evaluate
$$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } 2 x d x$$
leaving your answer in terms of \(\pi\).