Integration by Parts

197 questions · 20 question types identified

Sort by: Question count | Difficulty
Independent multi-part (different techniques)

A question is this type if and only if it contains multiple independent parts where integration by parts is used in one part and completely different integration techniques (substitution, partial fractions, trigonometric identities) are used in other parts, with no connection between parts.

23 Moderate -0.1
11.7% of questions
Show example »
3. Find
  1. \(\int \frac { x } { 2 - x ^ { 2 } } \mathrm {~d} x\),
  2. \(\int x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\).
View full question →
Easiest question Easy -3.0 »
12 A random sample of 84 students was asked how many revision websites they had visited in the past month. The data is summarised in the table below.
Number of websitesFrequency
01
14
218
316
45
537
62
71
Find the interquartile range of the number of websites visited by these 84 students.
Circle your answer.
[0pt] [1 mark]
341942 Identify this Venn diagram. Tick ( ✓ ) one box. \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_506_501_584_374} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_117_111_580_897} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_508_504_580_1203} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_117_120_580_1710} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_508_501_1135_374} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_112_111_1133_897} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_505_506_1133_1201} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_112_109_1133_1717} Turn over for the next question
View full question →
Hardest question Standard +0.3 »
8
  1. Show that \(\int _ { 2 } ^ { 4 } 4 x \ln x \mathrm {~d} x = 56 \ln 2 - 12\).
  2. Use the substitution \(u = \sin 4 x\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 24 } \pi } \cos ^ { 3 } 4 x \mathrm {~d} x\).
View full question →
Basic integration by parts

A question is this type if and only if it asks to find or evaluate a single definite or indefinite integral using integration by parts once, with standard functions like x·e^(ax), x·sin(ax), x·cos(ax), or x·ln(x).

22 Moderate -0.3
11.2% of questions
Show example »
1 Find \(\int x \cos 3 x \mathrm {~d} x\).
View full question →
Easiest question Moderate -0.8 »
2 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\).
View full question →
Hardest question Standard +0.3 »
3 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x \sec ^ { 2 } x \mathrm {~d} x\).
View full question →
Integration of x^n·ln(x)

A question is this type if and only if it asks to integrate x^n·ln(x) or x^n·ln(ax) where n is a positive or negative power, using integration by parts with u=ln(x).

20 Standard +0.1
10.2% of questions
Show example »
2 Find \(\int x ^ { 8 } \ln ( 3 x ) \mathrm { d } x\).
View full question →
Easiest question Moderate -0.3 »
2 Find the exact value of \(\int _ { 1 } ^ { 2 } x \ln x \mathrm {~d} x\).
View full question →
Hardest question Standard +0.3 »
4 Show that \(\int _ { 1 } ^ { 4 } x ^ { - \frac { 3 } { 2 } } \ln x \mathrm {~d} x = 2 - \ln 4\).
View full question →
Stationary points then area/volume

A question is this type if and only if it requires finding stationary points of a curve first, then using integration by parts to find an area or volume related to that curve.

15 Standard +0.4
7.6% of questions
Show example »
9 \includegraphics[max width=\textwidth, alt={}, center]{3eefd6c1-924c-4b7e-8d17-a2942fb48234-3_399_696_255_721} The diagram shows the curve \(y = x ^ { 2 } \mathrm { e } ^ { 2 - x }\) and its maximum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) is 2 .
  2. Find the exact value of \(\int _ { 0 } ^ { 2 } x ^ { 2 } \mathrm { e } ^ { 2 - x } \mathrm {~d} x\).
View full question →
Easiest question Moderate -0.3 »
7 \includegraphics[max width=\textwidth, alt={}, center]{25dffd43-9456-449b-be77-8402109ee603-3_608_672_283_733} The diagram shows the curve \(y = 2 \mathrm { e } ^ { x } + 3 \mathrm { e } ^ { - 2 x }\). The curve cuts the \(y\)-axis at \(A\).
  1. Write down the coordinates of \(A\).
  2. Find the equation of the tangent to the curve at \(A\), and state the coordinates of the point where this tangent meets the \(x\)-axis.
  3. Calculate the area of the region bounded by the curve and by the lines \(x = 0 , y = 0\) and \(x = 1\), giving your answer correct to 2 significant figures.
View full question →
Hardest question Standard +0.8 »
7 \includegraphics[max width=\textwidth, alt={}, center]{f4614578-f5f6-4283-8185-8b5598ad91d5-3_416_679_258_731} The diagram shows part of the curve \(y = \left( 2 x - x ^ { 2 } \right) \mathrm { e } ^ { \frac { 1 } { 2 } x }\) and its maximum point \(M\).
  1. Find the exact \(x\)-coordinate of \(M\).
  2. Find the exact value of the area of the shaded region bounded by the curve and the positive \(x\)-axis.
View full question →
Show that integral equals expression

A question is this type if and only if it asks to prove or show that a definite integral equals a specific exact value or expression, requiring full working with integration by parts.

12 Standard +0.2
6.1% of questions
Show example »
2. Show that $$\int _ { 1 } ^ { 2 } x \ln x \mathrm {~d} x = 2 \ln 2 - \frac { 3 } { 4 }$$
View full question →
Easiest question Moderate -0.3 »
2. Show that $$\int _ { 1 } ^ { 2 } x \ln x \mathrm {~d} x = 2 \ln 2 - \frac { 3 } { 4 }$$
View full question →
Hardest question Standard +0.8 »
7 Show that \(\int _ { 0 } ^ { \pi } \left( x ^ { 2 } + 5 x + 7 \right) \sin x \mathrm {~d} x = \pi ^ { 2 } + 5 \pi + 10\).
View full question →
Sequential multi-part (building on previous)

A question is this type if and only if it contains multiple parts where integration by parts in a later part depends on or uses results from earlier parts involving other techniques like algebraic manipulation, substitution, or simplification.

11 Standard +0.5
5.6% of questions
Show example »
4
  1. Use integration by parts to find \(\int x \sec ^ { 2 } x \mathrm {~d} x\).
  2. Hence find \(\int x \tan ^ { 2 } x \mathrm {~d} x\).
View full question →
Easiest question Moderate -0.3 »
2. (a) Use integration by parts to find \(\int x \mathrm { e } ^ { x } \mathrm {~d} x\).
(b) Hence find \(\int x ^ { 2 } \mathrm { e } ^ { x } \mathrm {~d} x\).
View full question →
Hardest question Challenging +1.8 »
6. (a) Use the substitution \(u = \sqrt { t }\) to show that $$\int _ { 1 } ^ { x } \frac { \ln t } { \sqrt { t } } \mathrm {~d} t = 4 - 4 \sqrt { x } + 2 \sqrt { x } \ln x \quad x \geqslant 1$$ (b) The function g is such that $$\int _ { 1 } ^ { x } \mathrm {~g} ( t ) \mathrm { d } t = x - \sqrt { x } \ln x - 1 \quad x \geqslant 1$$
  1. Use differentiation to find the function g .
  2. Evaluate \(\int _ { 4 } ^ { 16 } \mathrm {~g} ( t ) \mathrm { d } t\) and simplify your answer.
    (c) Find the value of \(x\) (where \(x > 1\) ) that gives the maximum value of $$\int _ { x } ^ { x + 1 } \frac { \ln t } { 2 ^ { t } } \mathrm {~d} t$$
View full question →
Reduction formula or recurrence

A question is this type if and only if it involves deriving or using a reduction formula I_n in terms of I_(n-1) or I_(n-2) through integration by parts.

11 Challenging +1.5
5.6% of questions
Show example »
7. $$I _ { n } = \int \left( 4 - x ^ { 2 } \right) ^ { - n } \mathrm {~d} x \quad n > 0$$
  1. Show that, for \(n > 0\) $$I _ { n + 1 } = \frac { x } { 8 n \left( 4 - x ^ { 2 } \right) ^ { n } } + \frac { 2 n - 1 } { 8 n } I _ { n }$$
  2. Find \(I _ { 2 }\)
View full question →
Easiest question Challenging +1.2 »
4.
  1. Show that, for \(n \geqslant 2\)
  2. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that $$\int x ^ { 4 } \cos x \mathrm {~d} x = \mathrm { f } ( x ) \sin x + \mathrm { g } ( x ) \cos x + c$$ where \(c\) is an arbitrary constant. $$I _ { n } = \int x ^ { n } \cos x \mathrm {~d} x$$
  3. Show that, for \(n \geqslant 2\) $$I _ { n } = x ^ { n } \sin x + n x ^ { n - 1 } \cos x - n ( n - 1 ) I _ { n - 2 }$$
  4. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that
View full question →
Hardest question Challenging +1.8 »
  1. Show that $$\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { x } \cos x \mathrm {~d} x = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \frac { 1 } { 2 } \pi } + \mathrm { e } ^ { - \frac { 1 } { 2 } \pi } \right)$$
  2. It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos ^ { n } x \mathrm {~d} x$$ Show that, for \(n \geqslant 2\), $$4 I _ { n } = n ( n - 1 ) \int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin ^ { 2 } x \cos ^ { n - 2 } x \mathrm {~d} x - n I _ { n }$$ and deduce the reduction formula $$\left( n ^ { 2 } + 4 \right) I _ { n } = n ( n - 1 ) I _ { n - 2 }$$
  3. Using the result in part (i) and the reduction formula in part (ii), find the \(y\)-coordinate of the centroid of the region bounded by the \(x\)-axis and the arc of the curve \(y = \mathrm { e } ^ { x } \cos x\) from \(x = - \frac { 1 } { 2 } \pi\) to \(x = \frac { 1 } { 2 } \pi\). Give your answer correct to 3 significant figures.
View full question →
Improper integral with parts

A question is this type if and only if it asks to evaluate an improper integral (with infinite limit or discontinuity) using integration by parts and showing the limiting process explicitly.

10 Standard +0.9
5.1% of questions
Show example »
5
  1. Find \(\int x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\).
  2. Hence evaluate \(\int _ { 0 } ^ { \infty } x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\), showing the limiting process used.
View full question →
Easiest question Standard +0.3 »
2
  1. Find \(\int _ { 0 } ^ { a } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\), where \(a > 0\).
  2. Write down the value of \(\lim _ { a \rightarrow \infty } a ^ { k } \mathrm { e } ^ { - 2 a }\), where \(k\) is a positive constant.
  3. Hence find \(\int _ { 0 } ^ { \infty } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\).
View full question →
Hardest question Challenging +1.8 »
7
  1. Write down the value of $$\lim _ { x \rightarrow \infty } x \mathrm { e } ^ { - x }$$
  2. Use the substitution \(u = x \mathrm { e } ^ { - x } + 1\) to find \(\int \frac { \mathrm { e } ^ { - x } ( 1 - x ) } { x \mathrm { e } ^ { - x } + 1 } \mathrm {~d} x\).
  3. Hence evaluate \(\int _ { 1 } ^ { \infty } \frac { 1 - x } { x + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing the limiting process used.
View full question →
Double integration by parts

A question is this type if and only if it requires applying integration by parts twice to evaluate integrals like x²·sin(x), x²·cos(x), or x²·e^(ax).

10 Standard +0.3
5.1% of questions
Show example »
8 Find \(\int x ^ { 2 } \mathrm { e } ^ { 2 x } \mathrm {~d} x\).
View full question →
Easiest question Standard +0.3 »
2 Show that \(\int _ { 0 } ^ { \pi } x ^ { 2 } \sin x \mathrm {~d} x = \pi ^ { 2 } - 4\).
View full question →
Hardest question Standard +0.8 »
  1. Use integration by parts to find
$$\int x ^ { 2 } \sin x d x$$
View full question →
Normal/tangent then area with parts

A question is this type if and only if it involves finding a normal or tangent line to a curve, then calculating an area bounded by the curve and this line using integration by parts.

9 Standard +0.3
4.6% of questions
Show example »
8 \includegraphics[max width=\textwidth, alt={}, center]{dde12c57-5129-43ae-b385-9a8f21f51e49-3_566_787_255_680} The diagram shows the curve \(y = x \sin x\), for \(0 \leqslant x \leqslant \pi\). The point \(Q \left( \frac { 1 } { 2 } \pi , \frac { 1 } { 2 } \pi \right)\) lies on the curve.
  1. Show that the normal to the curve at \(Q\) passes through the point \(( \pi , 0 )\).
  2. Find \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sin x - x \cos x )\).
  3. Hence evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\).
View full question →
Easiest question Standard +0.3 »
10 \includegraphics[max width=\textwidth, alt={}, center]{e26f21c5-3776-4c86-8440-6959c5e37486-18_337_529_260_808} The diagram shows the curve \(y = ( \ln x ) ^ { 2 }\). The \(x\)-coordinate of the point \(P\) is equal to e, and the normal to the curve at \(P\) meets the \(x\)-axis at \(Q\).
  1. Find the \(x\)-coordinate of \(Q\).
  2. Show that \(\int \ln x \mathrm {~d} x = x \ln x - x + c\), where \(c\) is a constant.
  3. Using integration by parts, or otherwise, find the exact value of the area of the shaded region between the curve, the \(x\)-axis and the normal \(P Q\).
View full question →
Hardest question Standard +0.8 »
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{14f14bf3-88ee-413c-a62d-0914f41a485d-20_707_823_130_701} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with equation \(y = x \ln x , \quad x > 0\) The line \(l\) is the normal to \(C\) at the point \(P ( \mathrm { e } , \mathrm { e } )\) The region \(R\), shown shaded in Figure 2, is bounded by the curve \(C\), the line \(l\) and the \(x\)-axis. Show that the exact area of \(R\) is \(A \mathrm { e } ^ { 2 } + B\) where \(A\) and \(B\) are rational numbers to be found.
[0pt] [BLANK PAGE]
View full question →
Derivative then integrate by parts

A question is this type if and only if it asks to first find a derivative (often to establish a relationship) and then use integration by parts, with the derivative result guiding the integration.

6 Standard +0.7
3.0% of questions
Show example »
4
  1. Differentiate \(\mathrm { e } ^ { x } ( \sin 2 x - 2 \cos 2 x )\), simplifying your answer.
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \mathrm { e } ^ { x } \sin 2 x \mathrm {~d} x\).
View full question →
Iterative formula from integral equation

A question is this type if and only if it involves an integral equation equal to a constant, requires showing a rearranged form, and then uses an iterative formula to find the value of a parameter to a specified accuracy.

6 Standard +0.9
3.0% of questions
Show example »
5 It is given that \(\int _ { 1 } ^ { a } x \ln x \mathrm {~d} x = 22\), where \(a\) is a constant greater than 1 .
  1. Show that \(a = \sqrt { } \left( \frac { 87 } { 2 \ln a - 1 } \right)\).
  2. Use an iterative formula based on the equation in part (i) to find the value of \(a\) correct to 2 decimal places. Use an initial value of 6 and give the result of each iteration to 4 decimal places.
View full question →
Curve with minimum point

A question is this type if and only if it involves finding the exact coordinates of a minimum point on a curve (typically involving ln(x) or exponential functions) and then finding an area using integration by parts.

6 Standard +0.3
3.0% of questions
Show example »
9 \includegraphics[max width=\textwidth, alt={}, center]{bbc19395-6f88-4a7c-b5d4-59ced9ccdcf2-4_597_895_258_625} The diagram shows the curve \(y = x ^ { 3 } \ln x\) and its minimum point \(M\).
  1. Find the exact coordinates of \(M\).
  2. Find the exact area of the shaded region bounded by the curve, the \(x\)-axis and the line \(x = 2\).
View full question →
Integration of e^(ax)·trig(bx)

A question is this type if and only if it involves integrating e^(ax)·sin(bx) or e^(ax)·cos(bx), typically requiring integration by parts twice and solving for the original integral.

5 Challenging +1.2
2.5% of questions
Show example »
2.Given that \(S = \int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 2 x } \sin x \mathrm {~d} x\) and \(C = \int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 2 x } \cos x \mathrm {~d} x\) ,
(a)show that \(S = 1 + 2 C\) ,
(b)find the exact value of \(S\) .
View full question →
Volume of revolution with parts

A question is this type if and only if it requires finding a volume of revolution where the integral for the volume necessitates integration by parts.

5 Standard +0.7
2.5% of questions
Show example »
6
  1. By using integration by parts twice, find $$\int x ^ { 2 } \sin 2 x d x$$
  2. A curve has equation \(y = x \sqrt { \sin 2 x }\), for \(0 \leqslant x \leqslant \frac { \pi } { 2 }\). The region bounded by the curve and the \(x\)-axis is rotated through \(2 \pi\) radians about the \(x\)-axis to generate a solid. Find the exact value of the volume of the solid generated.
    [0pt] [3 marks]
View full question →
Area under curve requiring parts

A question is this type if and only if it asks to find the exact area of a shaded region where the integrand requires integration by parts, often with boundaries at specific values like x=e or x=π.

5 Standard +0.6
2.5% of questions
Show example »
6. The region bounded by the curve $$y = ( 2 x - 8 ) \ln x$$ and the \(x\)-axis is shaded in the diagram below. \includegraphics[max width=\textwidth, alt={}, center]{bc7fb499-9462-40ae-88f4-87fc60f6a005-12_871_913_422_575} Show that the exact area is given by $$32 \ln 2 - \frac { 33 } { 2 }$$ Fully justify your answer.
View full question →
Integration involving inverse trig

A question is this type if and only if it requires integrating an inverse trigonometric function (like tan⁻¹(x)) using integration by parts.

4 Standard +0.7
2.0% of questions
Show example »
4 Using integration by parts, find the exact value of \(\int _ { 0 } ^ { 2 } \tan ^ { - 1 } \left( \frac { 1 } { 2 } x \right) \mathrm { d } x\).
View full question →
Substitution then integration by parts

A question is this type if and only if it explicitly requires first using a given substitution to transform the integral, then applying integration by parts to the resulting expression.

4 Standard +0.9
2.0% of questions
Show example »
7 The integral \(I\) is defined by \(I = \int _ { 0 } ^ { 2 } 4 t ^ { 3 } \ln \left( t ^ { 2 } + 1 \right) \mathrm { d } t\).
  1. Use the substitution \(x = t ^ { 2 } + 1\) to show that \(I = \int _ { 1 } ^ { 5 } ( 2 x - 2 ) \ln x \mathrm {~d} x\).
  2. Hence find the exact value of \(I\).
View full question →
Multi-part with preliminary simplification

A question is this type if and only if it requires first simplifying an expression using trigonometric identities, algebraic manipulation, or other techniques in an early part, then applying integration by parts to the simplified form in a subsequent part.

3 Standard +0.3
1.5% of questions
Show example »
8
  1. Show that \(\int \cos ^ { 2 } 6 x \mathrm {~d} x = \frac { 1 } { 2 } x + \frac { 1 } { 24 } \sin 12 x + c\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 12 } \pi } x \cos ^ { 2 } 6 x \mathrm {~d} x\).
View full question →
Integration of ln(x) alone

A question is this type if and only if it asks to integrate ln(x) or ln(ax+b) by itself, typically using integration by parts with u=ln(x) and dv=dx.

2 Standard +0.3
1.0% of questions
Show example »
2 Use integration by parts to find \(\int \ln ( x + 2 ) \mathrm { d } x\).
View full question →
Unclassified

Questions not yet assigned to a type.

8
4.1% of questions
Show 8 unclassified »
5 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ( \ln x ) ^ { n } \mathrm {~d} x$$ where \(n \geqslant 1\). Show that $$I _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } ( n + 1 ) I _ { n }$$ Hence prove by induction that, for all positive integers \(n , I _ { n }\) is of the form \(A _ { n } \mathrm { e } ^ { 2 } + B _ { n }\), where \(A _ { n }\) and \(B _ { n }\) are rational numbers.
9
  1. Using the substitution \(u = \tan x\), or otherwise, find \(\int \sec ^ { 2 } x \tan ^ { 2 } x \mathrm {~d} x\).
    It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \tan ^ { 2 } x \mathrm {~d} x$$
  2. Using the result that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \sec x ) = \tan x \sec x\), show that, for \(n \geqslant 2\), $$( n + 1 ) I _ { n } = ( \sqrt { } 2 ) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 }$$
  3. Hence find the mean value of \(\sec ^ { 4 } x \tan ^ { 2 } x\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 1 } { 4 } \pi\), giving your answer in exact form.
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { x ^ { 3 } } \mathrm {~d} x$$
  1. Show that \(I _ { 2 } = \frac { 1 } { 3 } ( \mathrm { e } - 1 )\).
  2. Show that, for \(n \geqslant 3\), $$3 I _ { n } = \mathrm { e } - ( n - 2 ) I _ { n - 3 }$$
  3. Hence find the exact value of \(I _ { 8 }\).
6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\), $$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$ Hence find the exact value of \(I _ { 3 }\).
9 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\). Given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), prove that, for \(n > 1\), $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$ By first using the substitution \(x = \cos ^ { - 1 } u\), find the value of $$\int _ { 0 } ^ { 1 } \left( \cos ^ { - 1 } u \right) ^ { 3 } \mathrm {~d} u$$ giving your answer in an exact form.
9 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\). Given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), prove that, for \(n > 1\), $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$ By first using the substitution \(x = \cos ^ { - 1 } u\), find the value of $$\int _ { 0 } ^ { 1 } \left( \cos ^ { - 1 } u \right) ^ { 3 } \mathrm {~d} u$$ giving your answer in an exact form.
3 The integral \(I _ { n }\), where \(n\) is a positive integer, is defined by $$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
  1. Show that $$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
  2. Find \(I _ { 5 }\) in terms of \(\pi\) and \(I _ { 1 }\).
3 The integral \(I _ { n }\), where \(n\) is a positive integer, is defined by $$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
  1. Show that $$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
  2. Find \(I _ { 5 }\) in terms of \(\pi\) and \(I _ { 1 }\).