Edexcel F3 2020 June — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2020
SessionJune
TopicIntegration by Parts

4.
  1. Show that, for \(n \geqslant 2\)
  2. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that $$\int x ^ { 4 } \cos x \mathrm {~d} x = \mathrm { f } ( x ) \sin x + \mathrm { g } ( x ) \cos x + c$$ where \(c\) is an arbitrary constant. $$I _ { n } = \int x ^ { n } \cos x \mathrm {~d} x$$
  3. Show that, for \(n \geqslant 2\) $$I _ { n } = x ^ { n } \sin x + n x ^ { n - 1 } \cos x - n ( n - 1 ) I _ { n - 2 }$$
  4. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that