Integration of e^(ax)·trig(bx)

A question is this type if and only if it involves integrating e^(ax)·sin(bx) or e^(ax)·cos(bx), typically requiring integration by parts twice and solving for the original integral.

5 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
Edexcel P4 2021 January Q7
7 marks Standard +0.8
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{216f5735-a7ad-4d70-9da9-ae1f098a97d9-14_620_615_278_662} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure}
  1. Find \(\int \mathrm { e } ^ { 2 x } \sin x \mathrm {~d} x\) Figure 2 shows a sketch of part of the curve with equation $$y = \mathrm { e } ^ { 2 x } \sin x \quad x \geqslant 0$$ The finite region \(R\) is bounded by the curve and the \(x\)-axis and is shown shaded in Figure 2.
  2. Show that the exact area of \(R\) is \(\frac { \mathrm { e } ^ { 2 \pi } + 1 } { 5 }\) (Solutions relying on calculator technology are not acceptable.)
    Question 7 continue
Edexcel AEA 2002 Specimen Q2
9 marks Challenging +1.2
2.Given that \(S = \int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 2 x } \sin x \mathrm {~d} x\) and \(C = \int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { 2 x } \cos x \mathrm {~d} x\) ,
(a)show that \(S = 1 + 2 C\) ,
(b)find the exact value of \(S\) .
Edexcel AEA 2003 June Q7
22 marks Challenging +1.8
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{25f0c7cc-0701-4836-931e-0eff5145e029-4_446_1131_1093_567}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with question $$y = \mathrm { e } ^ { - x } \sin x , \quad x \geq 0 .$$ (a)Find the coordinates of the points \(P , Q\) and \(R\) where \(C\) cuts the positive axis.
(b)Use integration by parts to show that $$\int \mathrm { e } ^ { - x } \sin x \mathrm {~d} x = - \frac { 1 } { 2 } \mathrm { e } ^ { - x } ( \sin x + \cos x ) + \text { constant }$$ The terms of the sequence \(A _ { 1 } , A _ { 2 } , \ldots , A _ { n } , \ldots\) represent areas between \(C\) and the \(x\)-axis for successive portions of \(C\) where \(y\) is positive.The area represented by \(A _ { 1 }\) and \(A _ { 2 }\) are shown in Figure 3.
(c)Find an expression for \(A _ { n }\) in terms of \(n\) and \(\pi\) .
(6)
(d) Show that \(A _ { 1 } + A _ { 2 } + \ldots + A _ { n } + \ldots\) is a geometric series with sum to infinity $$\frac { \mathrm { e } ^ { \pi } } { 2 \left( \mathrm { e } ^ { \pi } - 1 \right) } .$$ (e) Given that $$\int _ { 0 } ^ { \infty } \mathrm { e } ^ { - x } \sin x \mathrm {~d} x = \frac { 1 } { 2 }$$ find the exact value of $$\int _ { 0 } ^ { \infty } \left| e ^ { - x } \sin x \right| d x$$ and simplify your answer. END
AQA Paper 1 2019 June Q16
16 marks Challenging +1.2
16
  1. \(\quad y = \mathrm { e } ^ { - x } ( \sin x + \cos x )\) Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) Simplify your answer.
    16
  2. Hence, show that $$\int \mathrm { e } ^ { - x } \sin x \mathrm {~d} x = a \mathrm { e } ^ { - x } ( \sin x + \cos x ) + c$$ where \(a\) is a rational number.
    16
  3. A sketch of the graph of \(y = \mathrm { e } ^ { - x } \sin x\) for \(x \geq 0\) is shown below. \(A _ { 1 } , A _ { 2 } , \ldots , A _ { n } , \ldots\) The areas of the finite regions bounded by the curve and the \(x\)-axis are denoted by \includegraphics[max width=\textwidth, alt={}, center]{6b1312f4-9a5c-4465-8129-7d37e99efefe-27_974_1507_502_262} 16
    1. Find the exact value of the area \(A _ { 1 }\) 16
  4. (ii) Show that $$\frac { A _ { 2 } } { A _ { 1 } } = \mathrm { e } ^ { - \pi }$$ 16
  5. (iii) Given that $$\frac { A _ { n + 1 } } { A _ { n } } = \mathrm { e } ^ { - \pi }$$ show that the exact value of the total area enclosed between the curve and the \(x\)-axis is $$\frac { 1 + \mathrm { e } ^ { \pi } } { 2 \left( \mathrm { e } ^ { \pi } - 1 \right) }$$ \includegraphics[max width=\textwidth, alt={}, center]{6b1312f4-9a5c-4465-8129-7d37e99efefe-30_2488_1719_219_150} \includegraphics[max width=\textwidth, alt={}, center]{6b1312f4-9a5c-4465-8129-7d37e99efefe-31_2488_1719_219_150} \includegraphics[max width=\textwidth, alt={}, center]{6b1312f4-9a5c-4465-8129-7d37e99efefe-32_2496_1721_214_148}
AQA Further Paper 2 2020 June Q12
12 marks Standard +0.8
12
  1. Given that \(I = \int _ { a } ^ { b } \mathrm { e } ^ { 2 t } \sin t \mathrm {~d} t\), show that $$I = \left[ q \mathrm { e } ^ { 2 t } \sin t + r \mathrm { e } ^ { 2 t } \cos t \right] _ { a } ^ { b }$$ where \(q\) and \(r\) are rational numbers to be found.
    [0pt] [6 marks]
    12
  2. A small object is initially at rest. The subsequent motion of the object is modelled by the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} t } + v = 5 \mathrm { e } ^ { t } \sin t$$ where \(v\) is the velocity at time \(t\).
    Find the speed of the object when \(t = 2 \pi\), giving your answer in exact form.
    13Charlotte is trying to solve this mathematical problem:
    Find the general solution of the differential equation \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 y = 10 \mathrm { e } ^ { - 2 x }\)
    Charlotte's solution starts as follows:
    Particular integral: \(y = \lambda \mathrm { e } ^ { - 2 x }\)
    so \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2 \lambda \mathrm { e } ^ { - 2 x }\)
    and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 \lambda \mathrm { e } ^ { - 2 x }\)