A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Integration by Parts
Q7
Edexcel FP2 2020 June — Question 7
Exam Board
Edexcel
Module
FP2 (Further Pure Mathematics 2)
Year
2020
Session
June
Topic
Integration by Parts
7. $$I _ { n } = \int \left( 4 - x ^ { 2 } \right) ^ { - n } \mathrm {~d} x \quad n > 0$$
Show that, for \(n > 0\) $$I _ { n + 1 } = \frac { x } { 8 n \left( 4 - x ^ { 2 } \right) ^ { n } } + \frac { 2 n - 1 } { 8 n } I _ { n }$$
Find \(I _ { 2 }\)
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8