| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2019 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Integration by Parts |
3 The integral $I _ { n }$, where $n$ is a positive integer, is defined by
$$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
(i) Show that
$$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
(ii) Find $I _ { 5 }$ in terms of $\pi$ and $I _ { 1 }$.\\
\hfill \mbox{\textit{CAIE FP1 2019 Q3}}